WHALLEY CREEK FISH HABITAT ASSESSMENT

1994

Compiled by:

M.C. Wright and Associates

January 1995

Prepared For:

Regional District of Nanaimo and Cary, Taylor and Associates Suite 11, 321 Wesely Street Nanaimo, B.C. V9R 2T5

Prepared By:

M.C. Wright and Associates Biological Consultants and Underwater Inspections 2231 Neil Drive, RR#3 Nanaimo, B.C. V9R 6T5

.

Table of Contents

Introduction:	. 2
Scope of the Study:	. 2
FISH HABITAT ASSESSMENT:	. 3
Drive	. 3
Road	
Treatment Plant	
Fish Distribution	11
Discussion:	
	13
Summary:	14
Potential Impacts and Recommendations:	15
Evaluation of "Plant Layout Secondary Treatment Option 4"	16
References:	
	1.7

Introduction:

This focused environmental impact assessment of the area located between McGuffie Road and Hammond Bay, Nanaimo, B. C. was prepared by M. C. Wright and Associates at the request of the Regional District of Nanaimo. The main focus of this study was to determine the utilization and condition of Whalley Creek rearing and spawning habitat in the area adjacent to and below the proposed expansion of the existing sewage treatment plant. This study provides the necessary information needed to identify the sensitive areas in Whalley Creek and what measures would be necessary to protect this habitat during construction of the plant. If a negative impact is realized this information will also provide the necessary data to mitigate such an impact. This report assumes that the regional district will be using Plant Layout Option 4.

When the RDN has identified the final layout of the plant, then a plan must be developed detailing how to protect the Fisheries Sensitive Zone (FSZ) during construction. Any negative impacts the plant expansion creates will require further planning so that mitigation strategy can be developed and implemented. Once the RDN has started to develop their work plans for habitat protection, close consultation with representatives of the Department of Fisheries and Oceans and the Ministry of the Environment will be required.

Scope of the Study:

Whalley Creek is located within the municipality of Nanaimo, B. C. and originates at a marsh located 2099.3 meters from the creek mouth in Hammond Bay. It flows east before discharging into Hammond Bay.

Because of the nature and limited scale of the proposed project, this environmental impact assessment was focused primarily on the fisheries resources and habitat within the immediate vicinity of the development and the areas below the proposed development. Although land development has been the cause of considerable hydrological and fisheries impacts for the area above the sewage treatment plant, this area was not included in the study as it will not be impacted by expansion of the treatment plant. The areas below the proposed site are included because any negative impact within the vicinity of the plant can

have an accumulated affect on the areas below.

FISH HABITAT ASSESSMENT:

See Figures 1,2 and 3 for habitat transect locations.

Habitat Assessment Section 1: Hammond Bay to Morningside Drive

This section flows north paralleling Morningside Drive and then east into Hammond Bay (Fig. 1). The mean gradient of section 1 is 3.9% (range: 0.5% - 13.0%). The stream channel lies within a ravine which rises to a maximum height of 6.8 meters above the stream bottom. Average channel width and wetted width for the 38 transects was 3.67 meters (range: 0.96 - 6.54) and 1.70 meters (range: 0.96 - 3.4) respectively. The mean depth for the wetted area of section 1 is 0.097 meters (range: 0.005 - 0.55).

The area surveyed is characterized by a series of riffles, glides and pools. Riffles and glides comprised 63.87% and 21.73% of the wetted area respectively. Pools comprised 11.4% of the total wetted area. There are a total of 11 pools in this section, which provide fish habitat of varying quality. Pool quality has been defined as average to low for most of the pools in this area because less than 50% of the pool perimeter had fish cover and very little instream cover. Pool cover (such as LOD, organic debris, overhanging vegetation within 0.3 meters of the water surface, rubble, boulders, undercut banks or water depth) (Platts et al. 1983), is defined as any material or condition that provides protection to fish from predators or competitors. Only two pools (M1+11.3 and M1+110) provide good rearing habitat while the rest are considered to be of average to poor quality (Fig.1). None of the pools are of sufficient size to support resident adult fish. In most cases the pools are too shallow and do not have adequate cover. At best the two pools within this section could hold two pairs of adult fish during spawning.

Pools were classified by the condition that formed or maintained the pool. The majority of the pools were formed by LOD (large organic debris) or bedrock and boulders. Some of the pools were established by residents damming the wetted area so that they could pump water from the creek up to their property. Although these altered areas created some rearing habitat, the pools were of poor quality, lacking in shoreline and instream cover. One pool in particular (M1+56) created a barrier to

juvenile fish which impedes their upstream migration. Degradation of the stream channel has changed the type of habitat available to salmonids. For example, pool volumes have decreased due to sedimention and the lack of debris required to form and maintain deep pools. Coho salmon require deep pools as rearing habitat, reduction in pool volume has led to the reduction or possibly the elimination of this species in Whalley Creek.

Surface substrate composition was variable throughout section 1 (Appendix Table 1). The dominant substrate varied from fines to bedrock. Gravel (small and large) was the dominant substrate at 47% of the transects. Cobble (small and large) dominated the substrate composition at 26.3% of the transects. Boulders were the dominant substrate for one transect only. Fines were the dominant and subdominant substrate at 18.4% and 24% of the transects respectively. Visual observation of surface substrate indicates that there is approximately 90 meters of substrate suitable for spawning. Although some of the section has been identified as suitable for spawning, depth of the wetted area would be a major limiting factor.

Sediment compaction (the relative density or looseness of stream bed material) was low for 53% of the transects. Compaction was moderate to high at 34.2% and 10.5% of the transects respectively.

Crown closure varied from 0 to 100%. The canopy consists of hemlock, maple, alder and cedar. The understorey consists of deer fern, ivy, bracken fern, salal, devils club and salmonberry.

Stream cover was low throughout the reach with only two pools with a cover rating of high (Appendix Table 1). The rest of the stream had moderate to poor cover. The typical cover features; cutbanks, overhanging vegetation, and LOD were limited throughout this section. Cutbanks within this section provide a small amount of summer and winter habitat for juvenile fish but the wetted area was generally too shallow, to provide protection for adult fish. LOD was also low in abundance. Only 6 pieces (range, length: 1.25 to 10.45 meters, diameter: 0.30 to 1.4 meters) were rated and measured as a cover feature (Appendix Table 4). LOD in this section provides cover from predators and high stream flows as well as being the key factor in forming pools. The habitat created by the LOD was of average to poor quality. The limited amount of LOD in this section has probably reduced overwinter survival and affected habitat composition.

Bisson et al. (1987) states that the loss of large debris has led to a shift in stream habitat composition that favours underyearling trout at the expense of the older trout age classes as well as, both underyearling and yearling coho salmon.

The stream banks in the areas listed below have received major and or severe alterations by water flows:

Right Bank	Left Bank
1+35 to 1+56 1+71.8	1+56 1+71.8 1+81
1+110	1+90 1+110 1+115
1+120 1+134	1+120 1+134
	1+145

The remainder of the banks have shown light to moderate alterations. The only area to show no sign of erosion was at M1+11.3. The dominant bank material was soil (>60%) for both banks, other materials that dominated bank composition were fines, root mass, LCD, bedrock and boulder (Appendix Table 1). In two locations, M1+145 and M1+190, property owners stabilized the banks with landscaping rock.

Vegetative stability for stream banks at the transect markers were rated as poor (RB=64.71% and LB= 55.88%), the remaining banks evaluated at the markers were rated as having fair (RB=11.76%, LB=14.71%), good (RB=17.65%, LB=23.53%) and excellent (RB=5.8%, LB=5.8%) vegetative stability.

Mean right and left bank height for section 1 is 0.89 (range: 0.15 to 2.23) and 0.96 (range: 0.24 to 1.9) meters respectively (Table 1).

Habitat Assessment Section 2: Morningside Drive to Shore Road

This section flows east within a ravine between Shore Road and Morningside Drive (Fig. 2). The maximum elevation of the ravine walls is 5.24 meters above the streambed. The average height of the left and right wall of the ravine is 3.3 meters and 3.86 meters respectively. The measured mean gradient

for this section is 3.58% (range: 0.5% to 8.5%). The mean channel and wetted widths are 4.36 meters (range: 2.63 - 8.71) and 1.736 meters (range: 0.9 - 2.46) respectively. The average depth of the wetted area for the 24 transects was 0.076 meters (range: 0.001 - 0.281) (Table 1.).

Stream habitat was evaluated at 24 transects, spaced at 3 to 15 meter intervals. This area of Whalley Creek is comprised of a series of riffles, glides and pools. Riffles are the dominant habitat unit in this section. The three habitat units; riffles, glides and pools comprised 55.8%, 28.14%, and 16.06% of the wetted area respectively.

There are 10 pools in section 2 that provide rearing habitat for juvenile cutthroat trout. As in section 1 the pools were rated for habitat quality. The pools were rated as poor (55.6%), average (33.3%) and good (11.1%). The mean pool length for this section is 3.23 meters (Table 1). Only one pool in this section was rated as having good (M2+176) cover for fish. This pool had both good cover around the perimeter and good instream cover (LOD). Unfortunately the pool has been degraded by settling out of sediment which has caused infilling of the pool thus reducing the quality of the rearing habitat. The maximum depth of this pool was 0.16 meters.

The remainder of the pools all provide some cover, but are not of a size or quality to support a large number of juveniles nor could they support resident adult fish, except during the bankfull stage. During the summer months there is no habitat that could support adult size fish. The pools are too shallow during periods of drought and therefore would not provide refuge for adult cutthroat trout. Substrate quality in all of the pools is dominated by fines, affecting incubation success of eggs deposited in these areas.

Surface substrate composition was variable throughout section 2 (Appendix Table 2). The dominant substrate varied from fines to large cobble. Gravel (small and large) and fines were the dominant substrate at 41.7% of the transects respectively. Cobble (small and large) dominated the substrate composition at 16.6% of the transects. Gravel (small and large) were the subdominant substrate at 87.5% of the transects. Visual observation of surface substrate indicates that approximately 93.5 (44.4%) meters of substrate is suitable for spawning. Although substrate composition indicates that there are areas

that have suitable substrate for spawning, low water levels are a major limiting factor. Fall base flows in Whalley Creek are too low to allow easy migration and spawning of adult fish, especially coho. Areas in section 2 where the dominant substrate is fine material will have poor incubation success. High levels of sediment smother eggs and kill salmonid alevins.

Sediment compaction (the relative density or looseness of stream bed material) was low for 62.5% of the transects. Compaction was moderate at 37.5% of the transects. No areas of high compaction were observed in section 2.

Crown closure varied from 50% to 100%. The canopy consists of hemlock, fir, maple, alder and cedar. The understorey consists of deer fern, ivy, salal, devils club, various species of grass, blackberry, buttercup, horsetail, skunk cabbage and bleeding heart.

Stream cover was low throughout the reach with only one pool with a cover rating of good (Appendix Table 2). The rest of the stream had moderate to poor stream cover. The typical cover features; cutbanks, overhanging vegetation, and LOD were limited throughout this section. Cutbanks provide limited summer and winter habitat for juvenile fish while the wetted area, was generally too shallow to provide protection for adult fish. Cutbanks were small in size also limiting their value as cover except when the stream is at the bank full stage. LOD was also limited in abundance. Only 6 pieces (range, length: 2.7 to 13.06 meters, diameter: 0.17 to 0.8 meters) were rated and measured as a cover feature (Appendix Table 2). LOD in this section provides cover from predators and high stream flows as well as being a key factor in forming pools. The habitat created by the LOD was of average to poor quality. The limited amount of LOD in this section has probably reduced overwinter survival and affected the habitat composition. One large debris pile located between M2+143.5 and M2+155.1 created some rearing habitat but was of average quality. This debris pile was comprised of large and small LOD (Appendix Table 4). This area does not impede passage of fish, but could become a barrier if small debris in the form of branches and LOD continue to accumulate in large quantities. Other debris piles (M2+19 to M2+20.5, M2+176.8 to M2+179.4 and M2+194.12 to M2+195.83) in the section were generally unstable and small and therefore, would more than likely shift during high flows.

Mean right and left bank height for section 2 is 0.86 meters (range: 0.08 to 2.2) and 0.79 meters (range: 0.26 to 1.49) meters respectively (Table 1).

The stream banks in the areas listed below have received major and or severe alterations by water flows:

Right Bank

Left Bank

2+107 to 2+144

2+96 to 2+113

The remainder of the banks have shown light to moderate alterations. The dominant bank material was soil (>90%) for both banks, other materials that dominated bank composition were fines, root wad and LOD (Appendix Table 2).

Vegetative stability for stream banks at the transect markers were rated as poor (RB=72.2% and LB= 76.5%), the remaining banks evaluated at the markers were rated as having fair (RB=22.2%, LB=5.9%) and good (RB=5.6%, LB=17.6%) vegetative stability. At 75% of the transects, less than 50% of the stream banks were covered in vegetation, making section 2 highly susceptible to stream bank erosion.

Habitat Assessment Section 3: Shore Road to the Sewage Treatment Plant

This section flows east between the Sewage Treatment Plant and Shore Road (Fig. 3). Stream habitat was evaluated at 45 transects, spaced primarily (87%) at 5.0 meter intervals (range: 2.5 to 13.4 meters). This area of Whalley Creek is comprised of a series of riffles, glides and pools. Glides are the dominant habitat unit in this section. The three habitat units; glides, riffles and pools comprised 58.02%, 39.25%, and 2.73% of the wetted area respectively.

The left bank of section 3 is frequently confined by terraces while the right bank is occasionally confined by terraces, with the majority of the right bank being bordered by flood plain. This flood plain is adjacent to Hammond Bay Road and is the proposed site of construction for the expansion of the sewage treatment plant. The average height of the left and

right terraces is 1.76 meters and 1.12 meters respectively. The measured mean gradient for this section is 1.5% (range: 1.0% to 2.0%). The mean channel and wetted widths are 3.61 meters (range: 2.75 - 5.70) and 1.465 meters (range: 0.67 - 3.11). The average depth of the wetted area for the 45 transects was 0.071 meters (range: 0.002 - 0.85) (Table 1).

There are 2 pools (M3+59.63 and M3+141.43) in section 3 that provide rearing habitat for juvenile cutthroat trout (Appendix Table 3). As in sections 1 and 2 the pools were rated for habitat quality. All pools were rated as poor and have been seriously degraded, lacking both instream cover and cover around the perimeter. There are remnants of cutbanks that have been altered by stream flow on both sides of the pool. The right bank has eroded severely and undercut too quickly, which has caused bank material to slough off into the stream bottom. Fine sediment blankets the bottom of the pools to depths >15.0 cm. Pool lengths for this section are 1.97 (M3+59.63) and 4.3 (M3+4.3) meters. The maximum depth of the two pools located at M3+59.63 and M3+141.43 are 0.31 and 0.13 meters respectively (Appendix Table 3).

The only area in Section 3 that would provide cover for adult size fish is the inside of the culvert below the weir at the Sewage Treatment Plant. The rest of the section has been too badly degraded to support any appreciable number of either adult or juvenile fish. During the summer months pools are shallow and there is no habitat that could support adult size fish. Substrate quality in all of the pools is dominated by fines, thus affecting incubation success of eggs deposited in these areas.

Surface substrate composition was variable throughout Section 3 (Appendix Table 3). The dominant substrate varied from organic debris to large cobble. Fine sediment was the dominant substrate at 45.2% of the transects. Gravel (small and large) dominated the substrate composition at 33.3% of the transects. Gravel (small and large) were the subdominant substrate at 57.1% of the transects. Visual observation of surface substrate indicates that approximately 92.0 (39.2%) meters of substrate is suitable for spawning. The majority of area determined as having suitable substrate for spawning was located between M3+0 and M3+97 however, this area would probably experience poor egg to fry survival because of the high levels of fine sediment on the stream bottom upstream of the site. The larger fine sediment transported downstream during high flows can trap alevins in

redds, while the small fine particles decrease the permeability through the spawning gravel thereby decreasing oxygen reaching the eggs, and leading to high mortality.

Substrate quality deteriorated above M3+97 and by M3+143 the substrate was largely covered in fine sediment, in some areas >15.0 cm. deep. Although substrate composition indicates that there are areas that are suitable for spawning, high levels of fine sediment and low water depths would be a major limiting factor. Fall base flows in Whalley Creek are too low to allow easy migration and spawning of adult fish, especially coho. Areas in section 3 where the dominant substrate is fine material, will have poor incubation success.

Sediment compaction (the relative density or looseness of stream bed material) was low for 76.2% of the transects. Compaction was moderate at 21.4% of the transects. There was one area of high compaction in section 3.

Crown closure varied from 50% to 100%. The canopy consists of hemlock, fir, alder and cedar. The understorey consists of deer fern, devils club, various species of grass and blackberry.

Stream cover was poor throughout the reach (Appendix Table 3). In section 3 >70% of the area provided no cover for fish. The areas that did provide cover were of poor quality and would support juvenile fish only. The typical cover features; cutbanks, overhanging vegetation, and LOD were limited throughout this section. Cutbanks within this section provide very little summer and/or winter habitat for juvenile fish, while the wetted area, was generally too shallow to provide protection for adults. Cutbanks were generally small in size, limiting their value as cover. Abundance of LOD was low with only 7 pieces (range, length: 1.4 to 5.48 meters, diameter: 0.11 to 0.63 meters) being rated and measured as a cover feature (Appendix Table 4). this section provides some cover for juvenile fish from predators and high stream flows. The habitat created by the LOD was of poor quality. The limited amount of LOD in this section has most likely reduced overwinter survival and affected habitat composition. One large debris pile located between M3+97 and M3+103.28 created some rearing habitat but was of poor quality. This debris pile was comprised of large and small LOD (Appendix Table 4). Although this area does not impede passage of fish, it could if small debris in the form of branches and LOD continue to accumulate in large enough quantities.

Mean right and left bank height for section 3 is 0.93 meters (range: 0.27 to 1.685) and 0.1.19 meters (range: 0.25 to 2.54) meters respectively (Appendix Table 3).

The stream banks in the areas listed below have received major and or severe alterations by water flows:

Right Bank		Left	Bar	ık
3+50 3+62 to 3+82 3+97 to 3+103 3+128 to 3+143 3+153	-	3+77	to to	3+59.5 3+82 3+103
		3+153	3	

The remainder of the banks have shown light to moderate alterations. The dominant bank material was soil (>70%) for both banks, other materials that dominated bank composition were clay, mud and sand (Appendix Table 3).

Vegetative stability for stream banks at the transect markers were rated as poor (RB=83.3% and LB= 79.2%), the remaining banks evaluated at the markers were rated as having fair (RB=16.7%, LB=20.8%) vegetative stability. At >80.0% of the transects, less than 25% of the stream banks were covered in vegetation, making section 3 highly susceptible to stream bank erosion.

Fish Distribution:

There is very little information on abundance or distribution of salmonids utilizing Whalley Creek. Some habitat assessment was performed by Dave Clough and Associates in 1993. In June of 1994, a small scale assessment of Whalley Creek was performed as part of the "Nanaimo Urban Stream Enhancement Study". The presence of cutthroat trout was confirmed below the sewage treatment plant during both studies, while no fish were found above the plant. The information supplied by these studies was limited and did not provide a complete picture of habitat utilization by salmonids.

Whalley Creek was electrofished on October 21,1994 to determine the distribution of fish in sections 1 to 3. Section 1

was electrofished using a one step removal technique. Sections 2 and 3 were electrofished using a three step removal technique. In sections 1 and 2, 123 (53.7%) and 112 (55.7%) meters of the wetted area were electrofished respectively. The entire wetted area of section 3 was electrofished. Ten subsections were sampled in section 1, ranging in size from 3 to 21 meters (Table 2). Six subsections were sampled in section 2, ranging in size from 11 to 28 meters (Table 2).

Three species of fish were found in Whalley Creek; Cutthroat Trout (Onchorhynchus clarki), Pumpkinseed (Lepomis gibbosus) and Stickleback (Gasterosteus aculeatus). A total of 266 fish were electrofished from sections 1 through 3, of which juvenile cutthroat trout were the most dominant species (Table 2). Cutthroat Trout comprised 97.7% of the total fish, while pumpkinseed and stickleback comprised 1.5% and 0.75% of the total respectively. The majority (51.5%) of the cutthroat trout were found in section 2. The remaining trout were removed from sections 1 (40%) and 3 (8.5%).

Cutthroat trout were distributed throughout sections 1 and 2, while in section 3 cutthroat were found in only 3 areas. The number and location of fish electrofished from each of the sections is summarized in Table 2. Cutthroat were found primarily in pools and drawn from under cutbanks in sections 1 and 2. The majority of the fish (56%) in section 3 were found in the culvert below the weir at the sewage treatment plant. This is the only area that provides any appreciable amount of cover. The low number of fish found in Section 3 clearly shows that the rearing habitat is too badly degraded to support anything more than a minor portion of the Whalley Creek cutthroat trout population.

In 1993, Dave Clough and Associates found coho fry up to Morningside Drive. No coho were found during the 1994 study.

Discussion:

Whalley Creek is a good example of how not to develop around a fish bearing stream. This watershed has seen degradation in all areas of the Fisheries Sensitive Zone (FSZ). The wetted area of the stream has been severely impacted by development through sedimentation to the point that the stream can only be used for rearing of small fish. With the exception of a few isolated areas, it is unlikely that adults of any size could spawn in the

creek. After detailed examination, it became apparent that this creek essentially supports anadromous fish and could not support a resident trout population in its present state. Information supplied by DFO and Dave Clough indicates that Whalley Creek probably supported a coho population which is near to, or in fact, extinct at this time. There were no coho found when the creek was electrofished on October 21.

In general the quality of habitat in the Creek is low. Undercut banks were small and would not provide cover for adult fish. Pools are small, shallow, provide minimal cover for juveniles and no cover for adults, and support low fish abundance. Deep pools are important to Cutthroat Trout and Coho in small streams, as they provide cover even during periods of prolonged drought.

Access to Rearing and Spawning Habitat:

At this time 68.6% of the rearing and spawning habitat is inaccessible, thus limiting utilization to the lower 660.25 meters of Whalley Creek. Migration of adult and juvenile fish is impeded by the weir at the Sewage Treatment Plant. Although badly degraded the habitat above the plant cannot be accessed. Even though this area needs considerable restoration it is important for future fish production that it be made accessible. Even if the area is not restored in the near future a fishway should be installed to allow fish passage to areas that can be utilized (ie.: the pond at the treatment plant).

Small waterfalls established by residents along section 1 create barriers to juvenile fish. These obstacles cause undue stress and hazards to fish which ultimately affects the productivity of present and future populations.

Juvenile migration is also affected by poor placement and design of the culverts at Morningside Drive and Shore Road. These culverts do not meet fisheries standards as they are situated too high above the stream bed and therefore, do not provide ready access into the culvert from outlet pools situated below. Access into the culverts would be possible during high water, but a lack of baffles inside and the steep gradient would create a velocity barrier restricting upstream migration. Water levels during low flows are not adequate to allow migration, even if fish had ready access to the culverts.

The storm drain at Morningside Drive diverts stream water through Morningside Park. This will have a negative impact on juvenile cutthroat trout that get swept out of the creek and into Hammond Bay, or dropped onto the beach at low tide. Any presmolt cutthroat trout transported through the storm drain into Hammond Bay are not physiologically able to tolerate salt water and would die.

Insufficient water depth caused by sedimentation also restricts movement of fish to spawning and rearing habitat.

Summary:

- 1. In its present state, Whalley Creek (specifically Section 3) cannot withstand any further negative impacts as a result of development. Further degradation of this tributary will eventually push the remaining population of trout to extinction. Essentially Whalley Creek will be nothing more than a drainage ditch.
- 2. At this time Whalley Creek supports juvenile cutthroat trout, pumpkinseeds and stickleback. The cutthroat population is probably anadromous since no adult forms of the species were found while electrofishing.
- 3. Fish production is limited by;
- a. Loss of spawning and rearing habitat due to erosion and sedimentation.
- b. Access to spawning and rearing habitat is impeded by poor placement and design of culverts and low base flows, all of which make migration difficult.
- c.. The weir at the sewage treatment plant has limited fish access to the lower 660.25 meters of the creek, thus limiting fish production. The RDN should install a fishway at the weir so fish can access the area above the Sewage Treatment Plant.
- 4. Whalley Creek will require extensive restoration before fish production can be increased. Cost associated with restoration of a tributary varies from about \$12,000.00 to \$100,000.00 per km. (Koski 1992). Newbury and Gaboury (1993) give a variety of examples of equipment and labour costs associated with habitat restoration and moving sections of a creek.

- 5. Diversion of stormwater into Whalley Creek has caused major impacts on the FSZ. For example, pools have filled in and vegetative cover has been destroyed.
- 6. Flows below the treatment plant are no longer strong enough to prevent settling out of sediment. If the weir at the treatment plant was not in place sedimentation in section 3 would not be as extensive.
- 7. Whalley Creek no longer supports coho spawning and rearing. Coho production is limited by lack of deep pools, insufficient water depths in the riffles and glides, a lack of good spawning substrate and poor access.
- 8. The riparian zone in section 3 has been degraded and will require restoration.
- 9. Off channel habitat has been lost. We observed no habitat that would provide overwinter rearing opportunities.
- 10. Sedimentation has caused infilling of habitat created by course substrate (large cobble and boulders) in riffles, glides and pools.

Potential Impacts and Recommendations:

- 1. Plant expansion will reduce water permeating through soil and will increase the amount of run off. Parking access and buildings will increase the amount of water that could be transported into the stream. Therefore the RDN will have to look at diverting storm water into a detention area before releasing it into the creek. The engineering department should calculate detention requirements and design a detention facility. Pub is an example of water no longer being able to permeate through the soil because of the paved parking lot. Run off from the parking lot drains directly into Whalley Creek increasing If any stream restoration is to be implemented then effects of storm water should be considered. The storm water ditch (drainage channels) located by the culvert at the sewage treatment plant should have a series of small detention ponds installed . This may also create some off channel habitat.
- Continued deterioration of rearing and spawning habitat.

3. Culverts need to be brought up to fisheries standards.

Evaluation of "Plant Layout Secondary Treatment Cotion 4"

Cn the basis of this environmental impact assessment, the principle impacts from expansion of the sewage treatment plant will be dependent on which plan the RDN decides to use. Based on the layout of Plan 4, the following will need to addressed;

- 1. The majority of section 3 will have to be shifted north of its present location. Before the RDN can proceed with this option they will have to develop a plan detailing how this can be achieved. Moving sections of a creek is both time consuming, costly and has been met with varying degrees of success. In discussion with Rick Eliason (DFO), moving a section of any creek is usually looked on as a last resort. In some instances DFO may require that the new channel be left for up to a year to stabilize (banks and riparian zone) before allowing the creek water to be diverted through the new channel.
- 2. Cost of moving a section of a stream can vary between \$50,000.00 and 100,000.00. Newbury and Goboury (1993) present an example of equipment and labour cost associated with moving a section of a stream.
- 3. The proposed design (prepared by a landscape architect) of the new channel will require considerable planning to ensure that a stable and productive area is created. At this stage the RDN will have to get the design approved by the Department of Fisheries and Oceans and the Ministry of the Environment.
- 4. If the creek is moved, the area above the treatment plant will have to be restored beforehand.
- 5. Considerable monitoring of the new channel will be required to ensure that channel integrity is maintained.
- 6. If the RDN receives approval to move section 3, they should try to persuade the City of Nanaimo, DFO and MOE to restore the habitat above and below section 3. If the area above the sewage treatment plant is not restored, then the degraded upstream habitat will affect the newly created habitat to an extent that the new channel will be degraded and money will have been wasted.

Understanding that the area for expansion of the sewage treatment plant is limited I feel that the RDN should consider some of its alternate development plans. If the RDN decides to develop around section 3 of Whalley Creek, the following should be considered;

- a. A "leave strip" of at least 15 meters from the high water mark must be defined. Government agencies may require a "leave strip" of 30 meters, this may be negotiable (Rick Eliason, pers. comm., 1994). The leave strip will have to be defined by legal survey and clearly marked on the Plant Layout Option.
- b. Once the "leave-strip" is defined, both DFO and MOE must be consulted to determine if it is adequate to protect the riparian zone.

Once the final plan has been selected and approved the following should be considered;

- a. The "leave strips" will have to be clearly defined at the construction site. For example a snow type fence will have to be installed along the "leave strip" boundary (Chilibeck 1993).
- b. If encroachment into the FSZ is anticipated during construction, plans will have to be developed and approved by DFO and MOE.
- c. If access to the other side of the creek is necessary then this should be established in the least sensitive areas of section 3. Again the plans will have to be developed and approved by both government agencies.
 - d. After all work is completed, areas of the FSZ that are impacted by construction will have to be re-vegetated.
- e. Plans must be developed to control runoff and transport of sediment into Whalley Creek from the construction site. This is discussed in some detail in Chilibeck (1993).

References:

Bisson, P.A., and eight others. 1987. Large woody debris in forested streams in the Pacific Northwest: past, present and future. Pages 143-190 in E. Sale and T. Gundy, editors.

- Proceedings of a symposium on streamside management: forestry and fisheries interactions. University of Washington, Seattle.
- Chilibeck, B. 1993. Land development guidelines for the protection of aquatic habitat.
- Clough, D. 1994. Personal Communication. D. R. Clough Consulting, Lantzville, B. C.
- Eliasen, B. R. 1994. Personal Communication. Department of Fisheries and Oceans, South Coast Division.
- Koski, K.V. 1992. Restoring stream habitats affected by logging activities, PP.343-403. In G. W. Thayer [ed.] Restoring the nations marine environment. Maryland Sea Grant College, University of Maryland, College Park.
- Newbury, R.W. and M. Gaboury. 1993. Stream analysis and fish habitat design. A field manual. Newbury Hydraulics Ltd., Gibsons, British Columbia

TABLES

Table 1. A Summary of Physical Features, by Section, for Whalley Creek, 1994.

		Section 1			Section 2			Section 3	
Physical Feature	Mean	Maximum	Minimum	Mean	Maximum	Minimum	. Mean	Maximum	Minimum
Wetted Width	1.703	3.40	96.0	1.736	2.46	06.0	1.465	3.11	0.67
Channel Width	3.668	6.54	96.0	4.364	8.71	2.63	3.61	5.70	2.75
Wetted Depth	0.097		0.005	0.076	0.281	0.001	0.071	0.85	0.005
Pool Length	2.332	4.40	0.70	3.23	00.9	1.00	3.13	4.30	1.97
Riffle Length	8.45	46.9	4.	12.47	43.4	2.90	6.003	20.47	1.62
Glide Length	3.76	8.80	1.00	7.075	20.00	1.80	9.513	71.50	1.90
Bank Height (Right)	0.89	2.23	0.15	0.86	2.20	0.08	0.93	1.685	0.27
Bank Height (Left)	96.0	1.90	0.24	0.79	1.49	0.26	1.19	2.54	0.25
			٠						
				_					

Table 2. Results of Electrofishing by Section and Species, Whalley Creek, 1994.

Water Temperature: Air Temperature:

9.0 7.0 Water Clarity Wind Speed

urity sinch seci d-Imph.

Water Cond.; Water Lavel:

Muddy Normai Sky: Countability Clear Poor

Area ins	pected		Frst Pasa		Sec	ond Pass			Third Pa	SS.	
Mar	ker		Cutthroat		Coho	Cutthroat		Cono	Cutthroat		Commen
Start	Flaish	Fry	Fry	Other	Fry	Fry	Other	Fry	Fry		#
3÷0	3+25	01	0	01	0	0	O i	0		0	<u> </u>
3÷45	3+25	0	0	01	0	o i	0	ō	o	a i	
3+59.5	3+45	0	0	0	0	o l	o i	ā	o l	oi oi	
3+82	3+59.5	0	2	01	0	0	01	ō	al	01	
3+97	3+82	0	0	01	a	a l	0.	ō	a	a:	
3+128	3+97	0	0	0.	ol	al	o i	ā	o	01	
3+148	3+128	0	3	0	oi	3	l stickleback	ă	o l	01	
3+168	3+148	0	0	0.	0	اه	0	ä	o l	O I	
3+188	3+168] 0	o l	0	al	o	o i	ă	o	0	
3+209.85	3+188	0	0	0	o	1	0	ŏ	o	Q i	1
Sewage Plant	3+209.85	0	5	Latickleback	a	5	l pump. seed	o i	3	0	
		1		l pump, seed!			· pempi scou	•	J		
			·	I stickleback			1 stickleback		<u> </u>		Total Cut.
	Totals	a	10	1 pump, seed	a	9	l pump, seed!	0	3	o	2
2+184.0	2+200	0	19	01	01	141	01	01	31	0	
2+176	2+159	l oi	9	1 pump. seed!	ol	5	oi	ō	2	Q i	į
2+144	2+124	0	5	1 pump. seed!	o i	41	01	õ	ōi	o l	
2+113	2+485	0	28	01	o i	6	o l	o i	o l	oil	
2+51	2+31	0	19	01	0	o l	o i	al	o l	o i	
2+24	2+13	l oi	20	01	0	o	o i	āl	o i	ail	;
											Total Cut.
	Totals	00	100	2 pump, seed!	0	29	01	0	5	01	134
1+224	1+224	0	3	01		ı			1		
1+208	1+198	0	6	01]	1				
1+179	1+168	0	2	0					1		
1÷156	1+152	0	5	01		ļ	1				
1+152	1+134	0	21	0		Ì	1		1		
1+127	1+110	0	17	0		-	1		1		
1+100	1+86	0	8	O i		ļ	į		I		1
1+81	1+76	0	1	0	ļ	Ì	3		[1
1+67	1+46	0	24	0		ĺ			[1:
1+36	1+16	0	8	O į		İ	1		-	1	• •
1+113	1+11.3	0	6	01		ļ	1		.		18
1+0	1+0	0	1	01		,		Ì	Į		•
	Totals	0	104	01	One pass or	he for this so	ction	Total Cutt	roat for Cre		26

FIGURES

Figure 9 Man of the Study Area Section 9 (Morningside Drive to Shore Road) 1994

Elaure o Man of the Study Area Cartina a /Share Boad to Sawade Trantment Plant 1994

Appendix Table 1. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 1, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 1, Ocean to Morningside Drive)

		Stream	Start																
		Channel	Dist.	Distance													Distance		
		Width	From	from Righ				,	;	:	į						from Left	Mean	Total
Transect	Start	Meters	Marker	Bank to				., !	Stream Depth Profile	Jeptin F	rollla							Depth	Wolford
Compass	Marker	Right	Meters	W. Edge	High			Distan	Distance from the Waters Edge	Ilie Wa	lers Ec	199 m	in Melers			lett	7	Along	Midil
Originals.	Number	to Left	1E/1±20m	Meters	⊗ ::							_	_	_	_	_	Mulars	Transact	(Moters)
	•	90 0	4	_	000	0.48	0.96										0000	0 115	900
		2			000		1 975	3000000000	10 S.A. 60m	0.00	144	100	30000	100	1			2	200
	-	3.00	+ 55	00.00	0.034		0.005						-	1		<u> </u> -	1.625	0+0	1.375
					0.00	1.80	2.20	2.60	3.40	9 84 5 W	100	100	St. Law Live	400					
	-	3.40	+11.3	00.00	CB	0.230	0.250		0.170								0.000	0.162	3.40
					0.00	0.80	1.45												
	-	5.40	+ 16	1.81	0.035	0.180	0.350										2.140	0 188	1.45
					0.00	0.70	1.375		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Management of the same								0900	
		4.30	177	0.00	2000	!.				1		Ŀ	- 1	+	-	1	C20 7	000 0	1.3/5
	-	4.76	+25	2.18	0.00		0.010	dry to	0 005	0 1 40 0	0.260 0.	0.250	0.040		<u> </u> 	-	0.380	0 096	2 20
	-		1		0.00	2.00	2.50	3.02							_				
	_	4.52	+30	1.375	0.010		0.060	0.050									0.125	0 033	3 02
					0.00	08.0	0.53	λig	ţō	1.20	1.40 1	1.60	1.85	2.10					
	_	5.57	+35	0.00	0.040	0.050	0 005						1	0.02	-		0F1 F	100	1.43
!			1	!	00.0	0.50	1.00	1.40	1.80	2 54									
	-	6.08	146	26.0	0.030		0.125	0.170	_1	0.160			-	-	-		2.570	0.117	2.54
					0.00	0.55	0.75	Dιγ	9	1.05	1.20	1.40	1.55						
	_	5.47	+ 51	1.58	0.070	0.070	0.005		1		0.350 0.	L	.250	-	-	_	2 640	0110	1.25
				_	00.0	0.20	0.50	0.70	0.90	1.10		1.68		- 1	-				
	-	5.87	+ 56	2.99	0.010	0.053	0.145	0.180	1		0.120 0.	010	-	\dashv	-		1,200	780 0	1.68
					0.00	-	1.00	1.30	1.70	2.20			-		_				
-	_	6.54	+ 59	3.00	0.015	_1	060.0	0.075	[0 030	-		-				1.340	0.054	2.20
					0.00		0.50	0,80		1.30	1.62				i				************
	-	3.18	+ 64	0.85	0.015		0.090	0.045	g	0.035	0.100	l	1	\dashv	-	-	0 7 1 0	0.058	1 62
					0.00		0.80	ριγ	0	.30	1.70 2	2.00		3.00					
		3.47	+ 67	0.00	СВ	1	0.260				.160 0.	L	0.100	0.005	-		0.970	0.150	2.50
				_	0.00	<u>: </u>	0.80	00.	1.30					- 1		į			
	-	2.46	+71	0.43	0.030		0.175	0.180	0.180	090 0		-	+	-	-	-	0.230	0 134	1 80
	,		,	C	000	0.40	0.70	1.00	1.25			. !	1		- 1	-			,
		27.75	0/+	10.2		•	200	0000	2007	\parallel	$\frac{1}{1}$	+	+	+	-	-	0+70	0.003	1 25
		2.49	18	0.30	0000	210	0 130	0 200	S C		-	:				1	0.990	#F.1 O	98
	•	3	31	31	9		0 80		1 40		-	-	-	+	-	-			
	-	3.68	+86	1.55	0.005	1	0.055		0.010				-		1		0.730	0.030	1.40
-					0.00	0.40	09.0	0.80	i	1.20	1.55		-	-	-				
	_	2.17	+ 90	0.47	CB_		0.215	0.195	_	0.750 0	0.010						0.150	0.253	cç I
					00.00		0.50	0.80	1.30										
		2.55	+95	0.75	0.005	0.015	0.045	0.070	0.550								0.500	0.137	1 30

Appendix Table 1. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 1, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 1, Ocean to Morningside Drive)

		Sueam	Start																
		Channel	Ulst.	Distance													Distance		,
Thangact	Start	Maters	Harker	Rank to				V	hream	Stream Denth Profile	rofile						Hom Len	Mean	N. Clai
Compace	Marker	Right	Meters	W Edge	Right			Distan	ce from	Distance from the Waters	ters E	Edge in	in Meters)			#	_	Along	41,13
Original	Number	to left	1E/1+20m	Meters		1.000	1000.2						-	-	-		, –	Transect	(Motors)
					00.0	0.30	0.50	0.80	1.18						-	-			7 = 1 = 1 = 1 = 1
	-	2.83	+ 100	0.80	0.168	0.190	0.140	0.055	0.010						-	:	0.850	0.113	π -
:		1	! !	1	0.00	0.25	0.40	0.50	0.80	1.00			.835						
-	-	2.64	+ 105	0.69	0.015	0.015	0.010	0.010	0.045	0.055	0.040	0.080	0.030				c11 0	0 033	1 835
					0.00	0.40	0.80	1.00	1.40	2.30									
	_	3.70	+ 110	1.26	0.070	0.115	0.160	0.225	0.250	0.010							0.140	0.138	2 30
					0.00	0.40	0.80	1.00	1.30	1.47									
	-	3.32	4 115	1.57	0 015	0.130	0.215	0.200	0.150	0 350					_		0.280	77.10	/+ -
					00.0	0.40	0.80	00.1	1.40	1.70	2.45			-					
	-	3.38	+ 120	0.70	0.025	0.070	0.025	0.028	0.045		0.025				_		0.230	0.035	2 45
					0.00	0.40	0.60	0.80	1.0			2	9 14 4 4 4						
	-	2.65	+ 126	0.72	0.040	0.170	0.100	0.070	0.015		_			_			0.830	6200	1.10
					00.0	0.40	09.0	0.90	1.20			r grade	- A-10-10-10-10-10-10-10-10-10-10-10-10-10-						
	-	3.50	+134	1.90	0.005	0.170	0.230	0.205	0.150								0.400	0.152	1 20
					00.0	0.40	٠.	1.20	1.50	we'r calca		e e e	g Julyanian			2			
	_	2.30	+138	00.00	0.040	0.140	0.235	0.190	0.010								0.800	0 123	150
			1	!	00.0	0.40	0.60	0.80	1.10										
	-	3.29	+145	0.56	0.015	0.094	0.085	0.065	0.005								1.630	0 053	1.10
					0.00	0.40	0.70	0.90	1.30						:				
		2.75	+152	0.70	0.015	0.130	0.130	090.0	0.010				-	-	-		0.750	0 069	1.30
					0.00	0.40	0.60	0.90	1.20										
	-	1.95	+157	0.21	0.060	0.180	1	0.130	0.085			-		-			0.540	0 129	1 20
					0.0	0.40	. 1	1.00	1.20	1.70									
		2.89	+168	1.02	0.010	0.050	0.028	L	0 035	0.045		1	-	1	-	-	0.170	0 029	1 70
			į		00.0	0.40	0.70	00.5	1.20	1.70		+							
-		4.36	+1/9	1.08	0.00	0.00	0.080	I _	7710	000	1	1	-		-	-	0.980	0.075	1.70
	*	205	190	000	3 6	0.40	0.00	000				+		+	-		0000	6300	
						9	_	2	1 98	2 6 140				+	+	+			20
		5.60	+201	3.00	0.005	0.043	-	0.18	0.055				<u> </u> 			<u> </u> -	0 620	0 0 0 0 0 0	86
					0.00	0 10	0.40	09.0	0.80	1.00	1.25		_	-		_			
	-	4.76	+ 208	1.30	CB	0.058	0.100	0.115	0.090	0.350							2.210	0 121	1.25
					0.00	0.40	0.80	1.00	1.20	1.40	1.60	1.95							
		4.08	+216	0.64	0.005	0.030	0.025	0.025	0.060	0.130		190	-	\dashv	_		1.490	0 0 0 0	1.95.
					0.00	0.40	0.80	00.	1.40		2.25				:				
	Ī.	3.98	+224	0.56	0.160	0.130	0 180	0.170	0.075	0.030	0.040		_	-	-		1.170	0.112	2.25

Appendix Table 1. Results of Fish Habital Assessment data collected at Whalley Greek, Section 1, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 1, Ocean to Morningside Dr.)

Appendix Table 1. Results of Fish Habitat Assessment data collected at Whalley Greek, Section 1, 1994.

25 Pump House Poul 26 Backwater poul associated with man anulo wull	•	· (:	5 - Average (Adult) 4 - Average (Juv.) 5 - Poor (adult) 6 - Poor (Juv.) 7 - No Haldet
17— Lateral Scour Pord associated with Received 16—Lateral Scour Pord associated with bedrock 19—Midchanned Scour Pord 20—Dammed Food associated with LOD 21—Eddy Pord 22—Lidy Pord 22—Lidy bod	23 = Rapids 24 = Rod Associated with Delais COVER RATING CORES.	rodon. .cr.	6 Med. baulders (101.6 to 30.8 cm.) 7 Small Boulders (50.8 to 25.4 cm.) 8 Overstream Vegetation 9 Instream Vegetation
9. Bachwater Pool associated with boulders 10. Bachwater Fool associated with rootwad 11. Bachwater Fool associated with I.OD 12. Trench Fool Associated with Bedrock 13. Secondary Channel Pool 14. When we Pool associated with I.OD	15 = Hunge Pool associated with Boulders 16 = Lateral Scour Pool associated with I.O.D. (To top of bank)	4 = 50% of streambank merface is covered by vegetation, gravel or larger material that does not allow bank erotion. 5 = 50 to 79% of bank sarfaces are covered by vegetation, gravel or larger material, allowing minor erotion. 2 = 25 to 49% of bank sarfaces are covered by vegetation, gravel or larger materials, allowing major erotion. 1 = <25% of banks are covered by vegetation, gravel or larger materials, banks erode oach yest with high water.	
IABITAT UNIT CODES: -Grave Hifle 2-Cobbo Hifle 5 - Boulder Hifle 4-Grave Gibo 5 - Cobbo Gibo	o = pound vano 7 = Cascado 8 = Falis Sucambank Vegatative Stability	4 = 80% of streambank sarface is covered in 20 to 79% of bank sarfaces are covered = 25 to 49% of bank sarfaces are covered = 25 to 49% of bank sarfaces are covered in = <25% of banks are covered by weget	0 = No wgatation

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 1, Ocean to Morningside Drive.) Appendix Table 1. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 1, 1994.

Г				2 E	030	0.26	20	30	44	53	34										-																				
	of	꽃	Horz.) Tiday	i o	0	0.50	0.30	0.44	0.23	0.34																														
	DS. End of	Cutbank		(m)	0.14	60.0	0.20	0.20	0.10	0.23	0.23																														
	DS.	Ü	Veri	Depth (m) Depth (m)	0	0	0	0	0	0	0																														
	of		ſ2.	(m)	09.0	0.80	0.32	0.54	0.20	0.24	0.90								-																						
	oint	ank	Horz	Dept																																					
	Mid. Point of	Cutbank	Veri.	(m)	0.20	0.28	0.205	0.12	0.13	0.06	0.28																														
sions			<u>></u>	Depth (m) Depth (m) Depth (m)																																				-	
imen			012.	1 (m)	0.40	0.40	0.31	0.25	0.12	0.30	0.40																														
nk D	o pu	ank		Dep	_						_						_																								
Cutbank Dimensions	US. End of	Cutbank	Vert.	Depth (m)	0.30	0.13	0.16	0.13	0.15	0.20	0.10																														
								<u></u>	_		ন																														
	End	Distance	From	Marker 1+123	1+67.3	1+67.9	1+92.6	1+111.68	1+210.30	1+221.8	1+225.82																														
	_	D.	-	Z	-	Ξ	<u> </u>		+										~																						
	Start	ance	3	Marker 1+97R	1+64.0L	1+66.6R	1+90.0R	1+109.68R	1+208.5R	1+217.0L	1+221.57R																														
	St	Distance	Prom	¥ -	1+6	1+6	1+9	1+10	1+20	1+2	1+22																														
<u> </u>	, v			2 2	12	_	12	-				****	7	-	-		СВ	9		-			9			Ŋ	ø		TOD	9	ત	9	9			~	က		၈		_
nk Composition	ele ≡	9 =	Left Bank	2 -	N	12	89	12	-	12	12	72	72	5	13	CB	13	10	10	10		13	9	10	13	9	9	9		0	으	10	9	10	9	9	13	10	10	10	Z.Z
Composition Sm. Couple =	L.g. Cobble =	Boulder =	Left		. 6	GO.1	13	13	5	13	13	13	5	7	7	9	9	13	13	5	13	<u>0</u>		2	<u></u>	<u>e</u>	5	<u>က</u>	<u>0</u>	<u></u>	<u> </u>	<u> </u>	5	ن	5	1 3	4	13	13	13	CULVERT
ank C	: <u>:</u>	, ¥		2 2	2		12	12					****				CB	9		TOD			9	_	<u>0</u>	9				a		_	9	9				0	N		2
Ba	el = 2	=	Bank	 	=	12	89	13		12	12	12	72	72	12	12	13	9	01	10		13	4	5	<u>6</u>	9	<u></u>	9	13 10	0	-	MM ROCK WALI	9	10	9	9	MM ROCK WALL	7	က	10	_
Rines = 1	Sm. Gravel	Gravel	Right Bank			12	13	_	_	65	13	<u></u>	<u>ဗ</u>	<u></u>	<u></u>	5	-0	5	<u></u>	<u>e</u>	6	10	_	9	9	<u>ල</u>	<u>ෆ</u>	<u>.</u>	<u>_</u>	<u>ත</u>	_	ROCK	<u>.</u>	65	<u></u>	13	ROCK	<u> </u>	6	<u></u>	CUI.VERT
Rin				<u> </u>	. ,	_	_	_	QI.	N		_	Q.	4	Q		01	ෆ	හ	4	_	<u>.</u>		Q	CJ	4	က			ෆ	ä	3 MM	_	-		OJ.	N M M M	<u>.</u>	01		2 CU
	Bank	Stability	•	-		0			N	Q	4	4		က	~	2		e		· 0		<u>.,</u>	_	<u></u>	-						~	-	_	-	01	_	_			0	
			_	E 6			74 FP	55	2	Ŋ	8	0	6 0	1	<u></u>	4	<u></u>	0	0	7:	9	Q	9	0	ග						Ŋ	0	7	4	4	_	ις.	9	7	Ω	.88
	Bank	Height	(Meters)	0.38		1.20	5 0.74	0.55	0.80	1.15			_	1.07	1.49	1.24	1.69	1.40					_		1.19					_	=		0.47	0.24	0.24	1.11					0
	<u> </u>	I	Ž	- C	0.15	0.70	0.535	1.70	1.80	0.72	1.50	2.23	1.15	2.055	1.61	1.00	1.10	1.00	1.00	0.56	0.42	0.85	0.38	0.53	1.08	0.615	0.73	0.73	0.70	0.70	1.025	1.10	0.55	0.24	0.24	0.815	1.56	06.0	0.37	0.44	1.03
Į,	ince	шc	ker	ic/1 + 20m +0	+5	+11.3	+16	+21	+25	+30	+35	+46		+56	+59	+64	+67	+71	+76	+81	+86	06+	+95	+100	+105		+115	+120	+126	+134	+138	+145	+152	+157	+168	+179	+190	+201	+208	+216	+224
Start	Distance	From	Marker	ic/1 +	• +	+	+	+	+	+	Ť	÷	+	Ŧ	+	Ŧ	Ŧ	+	+	Ŧ	Ŧ	Ŧ	¥	+	+	+	Ŧ	+	+	+	+	+	+	+	Ŧ	Ŧ	+	+	+	+	+
	······································	Start	Marker	Number	-		_	_	,-	-	_		_	_	-	-	-	-	_	_	-	-	_	_	-	-	-	-	-	-	-	-	_	_	-	_	_	-	-	-	-
•			-	-::																																					

Appendix Table 1. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 1, 1994.

	PP = Plood Plain	ú	the transect line.	transect line.	ee.
S	NB = Bank not clearly defined.	1 = 1 to 25% Stream banks are slightly aftered along the transect line.	2 = 26 to 50 % streambanks are recieving moderate alteration along the transect line.	3 = 51 to 75% streambanks have recieved major alteration along the transect line.	4 = 76 to 100% streambanks are severly altered along the transect line.
BANK STABILITY CODES	0 = Stable no errosion	1 = 1 to 25% Stream banks	2 = 26 to 50 % streambanks	3 = 51 to 75% streambanks	4 = 76 to 100% streambank
	Soil = 13		s = 12		
BANK COMPOSITION CODES	Rootwad = 10	Sand = 11	Riperian Rootmass = 12		
BANK COMPOS	Bedrock = 7	Mud = 8	Clay = 9		

The transfer of the present of the p				
The second secon				

APPENDICES

Appendix Table 1. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 1, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 1,Ocean to Morningside Drive)

Start	Start			Ø	UBST	RATE	MOS COM	SUBSTRATE COMPOSITION	NOI	•		Com	Compaction Check One	Embedded Substrate		Embedded	1 EGEND RANK CODES	
	From	RI	1		R2			H3		H4					ī	Substrate	R1 = Most Predominate	
	Marker	91 92	2 93	5	92	93	10	92 93	3 91	92 6	<u>03</u>	-	2 3	Yes	٥ N	Code	substrate	
F	+0	-	-		_			├─				×			×		R2 = Second most	
7-	+5	Q					၈		4			×			×			
-	+11.3	Q			_		၈					×			×		R3 = Third most	
-	+16	တ													×		Predominate	·
-	+21	8					က) دن			 ×	····		×		R4 = Pourth most	
	+25	7			_		၈		တ (×	-		×		Predominate	
_	+30	C)			_		၈		رں			×			×			
-	+35	၈			CI.		_	-,				×			×		SUBSTRATE CODES	-
-	+46	8		.,	၈		_					×			×		1 = fines (< 2 mm.)	
_	+51	4		/	2		7		01			×			×		2 = small gravel (2 mm. to 16 mm.)	
-	+56	7											×		×		3 = large gravel (16 mm. to 64 mm.)	
• •	+59	· -			2		၈					×			×		4 = small cobble (64 mm. to 128 mm.)	
• •	+64	4		•••	ෆ		Q		_			×			×		5 = large cobble (128mm. 10256 mm.)	
• •	+67				4		က		CV			×			×		6 = boulder (>256 mm.)	
- +	17.			• • •			6					_			×		7 = bedrock	
*	171	- 0			1 -) e.								×		8 = Mud	
- •	2 4	y +			• 0		0.								×		9 = clay	
- ,	- G	- (u c		, -								: ×		Compaction Codes	
,	9 6	, c			N C		- 0								< ×		1 = loose (can dislodue with foot)	
,) +	dr (. `	2 (VI (· ×		2 = med (some movement)	
-	+ 62 +	n ·	-	,	N G		0 (()		2 - Kich (no morrows)	
-	+100	-					N ((< ∶		5 = uign (no movement)	
	+105	4		/	<u>ب</u>		က		.,				 ×		× :			
-	+110	_			01							×			×		1 = 100% to 76% embedded	
-	+115	വ		_	9		a						× —		×		2 = 75% to 51% embedded	
_	+120	S		•	4		၈						×		×		3 = 50 tp 26% embedded	-
Y	+126	-			2		4		-						×		II.	
-	+134	9			4		က		CI						×		5 = 0% embedded	
-	+138	_			8		9						×		×			Т
	+145	တ			23		_		ones to						×			
	+152	4			၈		a					×			×			
	+157	4			01		က					×			×			
_	+168	8			6		4					×			×			
-	+179	4			၈		_			<u></u>			×		×			
-	+190	8			4		ß		ر.			×			×			
-	+201	က			5		Ø		4	_			×		×			-
- 7-	4008	0			_		6		7.				×		×			
-	+216	10					က			ດ			<u>.</u>		×			
- 4	2 0	1 4			. 10		ď						<u></u>		×			
	+224	†		····	<u> </u>		>		-									
		-	-	=				-									****	

Appendix Table 2. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 2, 1994.

90 045 0.0330.0630.113 0.035 0.028 0.056 0.064 0 184 0.032 0.048 0 068 0.0340 079 0.095 Transaci 0.081 0.031 0.081 Depth Mean Along 0.900 0.999 0.300 0.650 2.460 1.160 0.690 3.480 0.440 0.830 from Left 0.705 1.600 W. Edge 2.690 1.650 0.120 0.300 0.000 0.690 Distance Bank to Meters WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 2, Morningside Drive to Shore Rd.) l et 2.76 0.005 2.50 0.180 Distance from the Waters Edge in Meters 2.00 0.090 2.61 0.020 2.30 0.068 .50 2.11 0.005 2.25 0.027 o Stream Depth Profile 1.80 2.00 0.000 0.027 1.685 0.035 1.90 0.003 2.00 0.086 1.89 0.001 1.97 0.062 2.00 0.015 1.61 0.005 0.005 1.31 9! 1.50 0.105 0.042 0.002 1.41 0.005 0.100 0.000 0.000 1.50 0.050 1.50 1.50 0.057 0.110 0.022 0.90 1.20 0.266 0.210 0.80 1.20 0.60 0.90 1.20 0.036 0.034 0.041 1.20 0.010 0.60 0.90 1.20 0.035 0.045 0.048 0.141 Rock 0.046 0.60 0.90 1.20 0.116 0.128 0.140 0.60
 0.60
 0.90
 1.20

 0.105
 0.137
 0.126
 0.60 0.90 1.20 0.071 0.090 0.058 0.015 0.017 0.043 의 0.076 0.100 0 0.076 0.100 0 0.60 0.90 0.074 0.105 0.10 0.00 0.90 0.90 0.38 0.064 0.60 0.60 0.115 0.60 0.279 0.045 0.971 0.80 0.00 0.30 0.035 0.055 0.00 0.30 0 00 0 0 30 0 001 0 071 0 00 0 0 30 0 179 0 255 0 00 0 30 0 025 0 030 0 025 0 030 0.00 0.30 0.005 0.034 0.00 0.30 0.015 0.046 0.013 0.029 0.00 0.30 0.030 0.098 0.50 0.021 0.30 0.00 0.30 0.30 0.020 0.020 0.30 0.045 0.076 0.030 0.30 TOD 0.020 0.00 0.012 0.00 0.175 0 017 0.00 0.052 0.00 0.020 0.00 0.00 0.064 1.33 0.80 1.46 3.20 0.92 0.42 0.54 0.34 1.72 0.72 0.58 0.40 1.63 W. Edge 191 1.34 from Righ 66 50 52 Distance Bank to Meters oi Marker Meters E/1+20m From +110 +113 +144 +13 +107 +124 +135 Dist. + 19 +40 0 +2 +24 + 62 +73 +82 96+ 9 5 ÷ 3.30 3.40 3.40 Stream Channel 5.00 2.87 4.30 5 6.90 5.30 4.60 3.79 5.10 3.25 3.34 2.63 3.25 4.30 8 to left Width Meters Right αij. di 21 NI N 2 21 Q1 21 N NI NI N NI N NI N Marker Numbe Start

(Motors)

Oriental. Compass

Welled

Wide Total

0.90

0.971

1,685

2.30

1.90

2.00 1.70 1.89 2.25 2.00

9

.3

1.97

2.46

1.13

0.93 1.60

> 0.063 0.059

0.560 5.500

6.63

Dry 2

4.92 Dry

اع

Island t

1.13

0.60 0.90 0.112 0.065 C

060.0

0.056

0.020 0.00

1.75 2.08

+159

3.91

NI ~

+170

8.71

2.23

Appendix Table 2. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 2, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 2, Morningside Drive to Shore Rd.)

		Stream						
		Channel	Dist.	Distance		Distance		
		Width		from Righ		from Left	Mean	Total
Transect	Start	Meters	Marker	_	Stream Depth Profile	Bank to	Depth	Wetted
Compass	Marker	Right		W. Edge	Right (Distance from the Waters Edge in Meters)	Left W. Edge	Along	Width
Oriental.	Number	-	H2/1 + 20m	Meters		Meters	Transact	(Meters)
						_	1	: :
	8	4.71	4.71 + 176	2.46	'	0.020	0.095	2.23
					0.00 0.30 0.60 0.90 1.20 1.70			
	7	5.57	+184	3.82	. ~	0.050	0.121	1.70
					0.00 0.30 0.60 0.90 1.20 1.50 1.97			
	8	5.59	+195	1.23	1.23 0.050 0.175 0.240 0.211 0.135 0.076 0.021	2.390	0.130	1.97
					0.00 0.30 0.60 0.90 1.20 1.50 2.00 2.32			
	2	4.56	4.56 +200	0.90	0.90 0.120 0.162 0.235 0.281 0.310 0.210 0.110 0.045	1.340	0.184	2.32

Appendix Table 2. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 2, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 2, Morningside dr. to Shore Rd.)

E	J	tive	Λ.	Hall H	3	-	n	7		-		4	2	<u>a</u>	_		_	_	_	-		_ `				_		-						
Stream	Bank	Vegetative	VILLE	High Hall	-	-	0	၈	_	_	-	N .	2	1	-	_	_	_	-	_	-	- (N ·	_	,	-	-	_						
			-	4 6	7	7	9	7	7	9	7	7	_	/	~	7	~	/	0	9	7		_ (o o	N	_	7	4						
				2																														
		•	idea -			_	7 10	_		9	_	_	_	_	_	~	_	_		9							-	=						
	_		i e	2 - 14B																_														
	Cover	on the	Iransect Line Intercept	RI H2						=										က					_		=	=						
			Seci	4 2	_	7	7	9	7	9	7	7	_	7	7	7	7	7	0	7	7		~ `	_	N :	/	4	4						
		ŀ	ב ב	3				_																	N									
		0			Т			2		=	_						_		2	-		2	<u> </u>		=			=						
	Start	Distance	uo L	M&Ker ic/2 + 20	2+0	2 + 5		2 + 19	+	+	+ 40	2+51	15 + 62	2 + 73	2 + 85	96 +	+ 107	+ 110	+ 113	+ 124	+ 135	+ 144	+ 159	+ 170	+ 1/6	+ 184	+ 195	+ 200						
-	-	ă`	-	Σ }			CI.	~	4	a	8	αı .	~	~	~	~	2	ત	α-	2	2	2	2	2	N	~	ત	~	****					
				Change of																														
	378				╄	8.					8.		3.1		3.0				0		4.			3.0				6.5						
-	amet		8	Ę,		_					_		က		ന				20.0		17.4	•		က				9						
	Discharge Parameters		Length in Meters	Diff	11.95		3.0		6.8			56.9		43.4			5.0	6.0R							89		6.4		2.9					
	char			J. Poor	4			4		7						55		=		တ		Ξ	*			4				8	Culven			
	ä		9	3 Ŀ				3.75		2.4						3.0				3.5		0.1	٠,			2.0				5.1	3.35 CA		····	
				Po				n		~							-	9.0 L		(7)		_	~							נט	es.			
	Ħ,	eour	E .	Ker	0	+ 11.95	13.75	+ 16.75	20.5	29.4	31.8	33.6	+ 60.5	63.6	107.0	110.0	113.0	118.0	124.0	144.0	147.5	64.9	62.9	168.1	171.1	174.9	176.9	183.3	83.8	192.7	192.7			
	Start	Distance	Hom :	Marker	2+0	4	+ 2	5+	7 +	7	2+	2 +	+	5	+	4	5+	4	+	+	+ 2	+	5+	+	+ 7	+ 2	+ 2	5+	7	÷	7			
		_	,0	i (===	6.12	7.22	2.32	5.94	5.12	6.51	6.12	6.75	1.29	18.31	1.61	11.38	3.80	5.56	5.84	14.69	4.08	2.64	7.90	8.42	5.85	8.77	69.9	6.53	10.38	7.65			
	am	Orientation			<u> </u>			_							_		_																	
	Stream	Orier	S	Back	270	297	260	224	283	243	280	333	304	240	274	242	232	586	<u>ල</u>	262	560	244	272	272	340	307	224	186	286	311	262			
				Fore	8	117	80	44	102	63	100	153	124	9	94	62	52	106	120	82	8	64	95	95	160	127	4	9	8	13	86			,
		t			1	88	8	17.22	29.54	35.48	40.60	47.11	53.23	59.98	71.27	89.58	101.19	112.57	16.37	121.93	127.77	142.46	146.54	149.18	157.08	165.50	171.35	180.12	186.81	193.34	203.72			
		* Start	Location	From	Culvert	2 + 3.88	2 + 10.00	+ 17	+	+ 35	+ 40	+	2 + 53	2 + 59	2+71	+	+ 101	+ 112	+ 116	+ 121	+ 127	+ 142	+ 146	+ 149	+ 157	+ 16	+ 171	+ 180	+ 186	+ 193	+ 203			
				2			Q		N	2	~	7		7	8	N	2	8	8	C)	લ	7	ત	7	લ	01	ν X	رب جو	7	ત		ж		
_		-		-				20	æ		æ	×				*						٠,٠			~.		., ,					٠,٠		
				Gradient «	Q			1.0%	6.0%		4.0%	0.5%				1.0%		2.0%				3.0%			808		3.0%	8.5%			2.0%	4.0%		
				Š		8 8	22			09				27	28				.93	ш.	.46		.18	.08		.35			.34	.72		,		
				-		+ 10.00	+ 17.22	29.54	+ 35.48 6.0%	+ 40.60		+ 53.23 0.5%	59.98	+ 71.27	+ 89.58	101.19	+ 112.57	116.37	+ 121.93	+ 127.77	+ 142.46	146.54	+ 149.18	+ 157.08	165.50	+ 171.35	180.12	186.81	+ 193.34	+ 203.72		,		
		*Finish	ç	-	Markel D	2 + 10.00	2 + 17.22	2 + 29.54	2 + 35.48	2+	2 + 47.11	2 + 53.23	2 + 59.98	2 +	2+	2 + 101.19	2 + 112.57	2 + 116.37	2+1	2+1	2 + 1	2 + 146.54	5 +	5+	2 + 165.50	2+	2 + 180.12	2 + 186.81	5 +	N	2 + 210.42	to Culvert		
			n Location	Tom .			2 +	2 + 29.54	2 + 35.48	2+	2 + 47.11	2 + 53.23	+ 59.98	+	2+	2 + 101.19		2 + 116.37	2+1	2+1	2 + 1	146.54			165.50		2 + 180.12	2 + 186.81	5 +		2 + 210.42	to Culvert		

* Measurements were made with an electronic device with ~ 10.22 m. difference from initial measurements.

HABITAT UNIT CODES:		
1=Gravel Riffle	9=Backwater Pool associated with boulders	17= Lateral Scour Pool associated with Rootwad
2=Cobble Riffle	10 = Bachwater Pool associated with rootwad	18—Lateral Scour Pool associated with bedrock
3=Boulder Riffle	11 = Backwater Pool associated with LOD	19 - Mitchanicl Scour Pool
4=Gravel Glide	12= Trench Pool Associated with Bedrock	20=Dannacd Pool associated with LOD
S=Cobble Glibe	13= Secondary Channel Pool	21 = Eddy Pool
6=Boulder Glide	14 = Plunge Pool associated with LOD	22 =: Use when the pool forming features can not be determined
7=Cascade	15=Plunge Pool associated with Boulders	23=:Rapids
8=Falls	16=Lateral Scour Pool associated with LOD	

Appendix Table 2. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 2, 1994.

Streambank Vegatative Stability	(To top of bank)	COVER RATING CODES,	•
4 = 80% of streambank surface is covered	4 = 80% of streambank surface is covered by vegetation, gravel or larger material that does not allow bank erosion.	1 - 140 GeV (> 30 cm.) 2 = Med. LWD (20 10 50 cm.)	$10 = \text{Carbank}$ $11 = \text{Pool} \left(\text{sec discharse par } \left(\text{or type} \right) \right)$
3 = 50 to 79% of bank surfaces are coven	3 = 50 to 79% of bank surfaces are covered by vegetation, gravel or larger material, allowing minor crosion.	3 = Small LWD (10 to 20 cm.)	HABITAT QUALITY CODES.
2 = 25 to 49% of bank surfaces are coven	2 = 25 to 49% of bank surfaces are covered by vegetation, gravel or larger materials, allowing major eroxion.	4 = Very large boulders (406.4 to 203.2 cm.)	1 = Good (Adult)
1 = <25% of banks are covered by vegeta	1 = <25% of banks are covered by westelation, gravel or larger material, banks crode each year with high water.	5 = Large Boulders (203.2 to 101.6 cm.)	2 = Good(Jux)
0 = No vegetation		6 = Med. boulders (101.6 to 50.8 cm.)	3 = Average (Adult)
		7 == Small Boulders (50.8 to 25.4 cm.)	4 = Averago (Juv.)
		8 = Overstream Vegetation	5 = Poor(adult)
		9 = Instream Vegetalion	6 = Poor(Jux.) $7 = No Habitat$

Appendix Table 2. Results of Fish Habitat Assessment data colected at Whalley Creek, Section 2, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 2, Morningside Dr. to Shore Rd.)

								Ваг	k Co	Bank Composition	tion								
	Start					Pincs ==	-		Sm. C	Sm. Cobble ==	*			Cutbar	Cutbank Dimensions	sions			
	Distance	Bank	<u>بد</u>	ä	Bank	Sm. Gravel	ravel =	7	L. S. C.	Lg. Cobble =	S	Start	End	US. End of	J of	Mid. F	Mid. Point of	DS. End of	1 of
Start	From	Height		Stability	ΞÝ	I.g. Gravel =	ave	i,	Bould	Boulder = 6		Distance	Distance	Cutbank	ınk	Cutbank	ank	Culbank	ınk
Marker	Marker	(Meters)	_			Righ	1 Ban	عدا	I.e	ft Bank		Prom	Prom	Vert	Horz	Vert.	Horz.	Vert.	Horz.
Number	ic/1 + 20m	H	-	Œ	1	H1 R2	R	-	H	R1 R2	R3		Marker	Depth (m) Depth (m)		Depth (m)	Depth (m)	Depth (m)	Depth (m)
2	0+	2.2	0.97	7	F	13	၉	_	13	3	3	2	2+15.09	0.23	0.30	0.22		60.0	0.21
8	+5		0.92	N	Ø	13	e		13		3	2+13.86R	2+15.86	0.17	0.25	0.12	69.0	0.003	0.21
181	+13		0.925	-	N	13	<u>ო</u>	3	13		2	2+18.3R	2+20.2	0:30	0.40	0.13	0:30	0.003	0.35
8	+19		0.77	_	-	13	.,	2	_	12	17	2+111.28L	2+113.4	90.0	0.54	0.20	0.38	0.003	0.22
2	+24		0.65	_	-	10	13		13	_	2	2+119.10L	2+127.08	0.20	0.20	0.44	0.48	0.30	0.70
8	+31	0.73	1.12	Ø	_	13	77	2	13		2	2+132.64L	2+134.3	0.25	0:30	0.27	99.0	0.15	0.33
8	+40		0.29	N	_	13	ν,	2	13	2	9	2+135.3L	2+140.52	0.18	0.23	0.50	09.0	0.005	0:30
0	+51		0.26	_	æ	13	.,,	2	13		2	2+138.36R	2+140.36	0.10	0.20	0.35	0:30	0.003	0.30
CI	+62	96.0	1.43	-	_	13	7,7	6	13	12		2+164.49L	2+172.60	0.20	09.0	0.10	0.83	0.10	0.22
8	+73		0.17	£	괊	13	1,4	O!	13	1									
2	+85	1.05	0.43	-	윤	13	12	<u>2</u>	55		4 2								
2	96+	1.88	0.97	C)	4	13	Q	<u>හ</u>	13		<u>න</u>								
2	+107	1.39	1.11	က	က	13	``	<u>හ</u>			2 3								
8	+110	1.33	1.36	က	က	13		9	_										
2	+113	1.16	1.28	က	က	13	.,	2	13										
Ø	+124	1.41	1.49	က	N	13	ψ,	2	_		_								
8	+135	1.02	1.19	7	N	13	~	2	_	_									
2	+144	1.27	1.22	၈	7	13	<u>~</u>	2		_	<u>~</u>								
2	+159	0.81	1.04	7	N	_		<u>ه</u>	13	_								***************************************	
0	+170	0.47	0.85	7	က	13	12	2			2 12								
8	+176	0.51	0.67	7	~	TOD	13	_	<u>e</u>										
8	+184	0.60	0.26	N	N	13	•••	<u> </u>	13	_									
a	+195		0.81	C1	Q	13	-	- 2	၈		2 13								
2	+200	1.10	1.08	0	2	CUI.VERT	ERT		CUI.VERT	(ERT							٠		

	defined. PP = Flood Plain	he transect line	2=26 to 50% streambanks are recieving moderate alteration along the transect line.	3 = 50 to 75% atreambanks have recieved major alteration along the transect line.	s the transect line.
ES SES	NB = Bank not clearly defined.	1 = 1 to 25% atreambanks are slightly altered along the transect line	is are recieving moderale al	is have recieved major alter	4 = 76 to 100% streambanks are severly aftered along the transcet line.
BANK STABILITY CODES	0 = Stable no errosion	1 = 1 to 25% atreambanks	2 = 26 to $50%$ streambank	3 = 50 to $75%$ streambanh	4 = 76 to 100% streamban
	Soil = 13		13 = 12		
SITION CODES	Rootwad = 10	Sand = 11	Riperian Rootmass = 12		
BANK COMPOSITION	Bedrock = 7	Mud = 8	Clay = 9		

Appendix Table 2. Results of Fish Habitat Assessment data colected at Whalley Creek, Section 2, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 2, Morningside Dr. to Shore Rd.)

LEGEND	RANK CODES	R1 = Most Predominate	substrate	R2 = Second most	Predominate	R3 = Third most	Predominate	R4 = Fourth most	Predominate		SUBSTRATE CODES	1 = fines (< 2 mm.)	2 = small gravel (2 mm. to 16 mm.)	3 = large gravel (16 mm. 10 64 mm.)	4 = small cobble (64 mm. to 128 mm.)	5 = large cobble (128mm. to 256 mm.)	6 = boulder (>256 mm.)	7 = bedrock	8 = Mud	9 = clay	Compaction Codes	1 = loose (can dislodge with foot)	2 = med. (some movement)	3 = high (no movement)	Embeddedness Codes	1 = 100% to 76% embadded	2 = 75% to 51% embedded	3 = 50 tp 26% embedded	 4 = 23% 10 1% embedded	natural de la companya de la company
	Embedded	Substrate	Code											ෆ																
Embedded	Substrate		Yes No											×																
Compaction	Check One		1 2 3	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×			
NOIL		R4	93 91 92 93		က	4		4					4	-																
SUBSTRATE COMPOSITION		R3	93 91 92	90	4	<u>ග</u>	က	က	Ø.	4	4	67	_	7	4	က	-	4	4		တ	4								
SUBST		1 R2	2 93 91 92	ည	თ	61	CI	21	01	_ග	CI.	က	C)	က	<u>ෆ</u>	4	က	က	က	21	01	en	8	٥,	C)	-	01			
זו		m H1	ker 91 92	+0 4	+5 2	+13 1	+19 1	+24 1			91	***************************************		-	+96 2		+110 2	+113 2	+124 1	+135 1		<u></u>	+170 3	+176 1	+184 1	+195 2	9			
	Start Distance	Marker From	Number Marker				+				-					2 +107										•	2 +200			

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 3, Shore Rd. to Sewage Treatment Plant)

		100	1													ŀ			
		Change	olain Oist	Dietan															
		Width	From From	from Bigh													Distance		<u> </u>
é	1000			I Grand				č	ć	3						-	Hom ren	Mean	lolai
Iransoci	oldii.	Metets	Maikei		1		ę	one	Sueam Depin Prome	ייי איני	91						Bank to	Uapin 	Wetted
rsedmo-	Maikei		Mala	**			2	Stance	Distance from the waters Edge in Meters	e wate	5 509	2	91615			5	W. Edge	Along	Widin
Orientat	Number	to Left	1E/1+20m	Melers				- 11	· 4							_	Meters	Transact	(Meters)
	6	3.59	0 +	0.30	0.00	0.030	0.036 0.0	0.90 1.20 0.048 0.032	20 1,46 32 0.003	03.66							1.830	0.027	1.46
1	-				00.0	0.30	0.60	12.					10000						
	8	4.83	+ 5	2.61	0.002	0.033 0.		Ш									1.550	0.026	0.67
	(0.00	30	0 09 0		1.01	1 3 to 1		7.06.00	and the co						
	၈၂	5.13	9	0.73		0.056 0									1		3.390	0.022	1.01
					000	30		0.90 1.20	: 1	50 1.80	010				-	-		,	
di adia anti-	21	3.25	2	3	0 038	3				44 10 01	او				1	+	0.400	0.043	1.80
	e.	2.75	+ 20	1 00	0000	0 60	0.60 0.90	0.30 0.20	46 0 150	O C		-				-	0.215	0 163	4.495
					00 0	30		_L_		9	-	1). :			2	0.00	
	Ø	4.31	+25	1.63	0.001		Dry 0.080	ļ		15	 	<u> </u>					1.980	0.023	0.70
					0.00	0.30	06.0 09.0		20 1.375	75						_ -			
:	3	4.39	+30	1.12	0.020 C	123 0.	150 0.0	_									1.895	0.072	1.375
					0.00	30	0.60 0.90			50 1.80		3 2.01							
i	က၊	3.70	+35	1.555	0.040	027	0.025 0.053	1		o	\simeq						0.135	0 027	2.01
	C				00.00	35	10D to .59	59 0.90			1.45				-		0	6	
:	n	3.27	40	1 525	0.002 0	3	0.0								-	1	0.835	0.048	1.21
	ď	40.4	4.45		000	0.20 B	0.30 0.45	45 0.60	0.90	1.18	8010	-					4 0	990	•
	וי	31	21	21	3 6		3 6	1							-	1	610.5	0.000	1.18
	σ.	4 09	150		0.00	200	0.60 0.90	1.20	7.50	1.80	010				-		0.420	000	-
) I	S	3	31		3 5	200	-17			_1_			1	1	$\frac{1}{1}$	0/+:0	0.032	1.00
	C	r 70	u u			100		2000	000	200							u •	i c	,
	2	5	3				00 0 09	1	4			4	100		\dagger	+	2.133	0.034	
	60	4.615	+59.5	0.93	CBC	065	0.120 0.090	ļ	1							İ	2 185	0.065	40
					0.00	30	0.60 0.90		20 1.50	1.61	1					L			
	က	2.88	+62	0.50	0.045 0	116 0.			! 1	. —	5						0.770	0 071	1.61
÷ (****	•	(7		CB	30	0.60 0.90	<u> </u>	:: I	10			:	:					
	20	3.08	/ 0 +	40.0	- 1		0.030 0.060	_L:		200						1	1.515	0.035	1.525
	ന	3.30	+72	1.04	0.010	022	0.055 0.075	75 0 055	25.00	0 2.20 M	M. Len					Ī	0000	0.043	900
							0.60 0.90	100	5	Application of the second	1	61.28°	7 voor	20, 20, 20, 20, 20, 20, 20, 20, 20, 20,					
	က	3.02	+77	1.13		060	0.075 0.040	40 0.002	22								0.740	0.037	1.15
						0.30 0	0.60 0.90		8	14				and made					
	e)	3.37	+ 82	0.54	0.041	035			1	9							1.290	0.027	1.54
	¢	0			00.0	30	0.60 0.90	1.20	1.63	တ္တုပ									
	20	4.25	18+	51	0.015	200	010 0 670	- 1			-					1	1.250	0.032	1.63
	6	3.67	+ 92	1.25	25 0.012 0.	2010	0.052 0.055	55 0.065	20 1.75 35 0.078	75 1 85 78 CB							0 570	0 047	1.85
				-					1	•					7				7

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 3, Shore Rd. to Sewage Treatment Plant)

		١																	
		Sueam	ran	i															
		Channel	List.	Ulstance													Distance		
		ungi.	Eo.	ngm mon				ě	(•	;					_	rom Len	Mean	otal
Transect	Start	Meters	Marker	_			•	Stre	Stream Depth Profile	oth Pro	ije i		•				Bank to	Depth	Wetted
	Marker	High	Melers	_	10 E		티	Distance from the Waters	E wou	ne Walk	ars Edg	Edge in Meters	elers)			= =	W. Edge	Along	Width
Oriental	Numbed	to left	IE/1+30m	Meters	انت			11	ا'ــــــــــــــــــــــــــــــــــــ					3000		-	Meters	Transect	(Meters)
	e.	4 46	+97	LC	00.0	0.30	0.60	0.90 1.	1.20 1.	1.63							1 930	6600	1.63
		2	-				600	10			Security and	\$ 6000	0.000000	*			2000	0.022	20.
	Ø	4.00	+103	2.76		0.065 0	0.065 0.0	0.010		1		-					0.240	0.039	1.00
				-	0.00	0.30		0.90	1.20	1.56	5.7.200	and the second	a de la constante de la consta	0.00		1			
	တ၊	2.81	+ 108	0.5	0.050 C				1	160							0.750	0.051	1.56
					0.00				-	1.40	.								
	e)	3.95	+113	5	0.040			1.	-	40				-]		_	1.540	0.067	1.40
	m	2.80	+118	0.64	0.00	0.30	0 055 0	0 104 0 080	0.080 0.055	37 55						.	062 0	0.063	1 47
				:					Ţ.		1		200	Ī		+	20.1.20	0.003	
	တ	3.59	+123	1.88	-:0	030	0.035 0.0	1 8									0.500	0.046	1.21
	C		9		00.0	0.30	0 09 0	0.90	1.20	1.37							C L	0	
	21	75.37	1 1 20	0.042	0.023	0350	3 3		0.020	4						\dagger	900.	0/00	1.3/
	თ	3.59	+ 133	0.97	0.00	0.105	0.080 0.0	0.041 0.003	0.003								1.420	0.055	1.20
				;	0.00	0.30	0.60	0.90	1.20										
;	9	3.10	+ 138	1.56	0 003	048	0.052 0.0	- 1	- [•	_1			1	0.340	0.035	1.20
	ო	3.87	+143	0.25	- 10	082	0.600	0.247 0.2	0.230 0.215	1.50 1.80 0.215 0.220	0 2.10	0.195	3.11 0.052			ĺ	0.510	0.174	3.11
						0.30		No. 1	1.1										
	က	2.54	+148	0.77	9	<u> </u>	-+	1		-	-					<u> </u>	0.600	0.099	1.17
	c.	080	+ 153	0 47	00.0	213	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.53 0.90	15 0 040	8 9		3.4	10 P				1 420	0.060	•
					00.0	0.30		1	1							+			
	က	2.87	+158	0.75	0.005 0	024 0		1 1	60								0.910	0.034	1.2.1
	¢	70.0	169	0 7	000	0.15	0.30 0.	0.60 0.90	0.90 1.30	30	-	2				· .	000	000	•
	2		3		000	0 30 0	0 60 0	ł		56	-		2.000	F 1 1 1 2 2 2	:	t	0.030	200	00.1
	က	3.75	+ 168	0.87	0.134 0	0.165 0.	0.205 0.0	0.095 0.075	1	40							1.320	0.119	1.56
	e.	4 95	+173	2 22	0.00	080	0.60 0	0.90 1.20	20 1.60	0010		1	1		4 1 1 1		1 130	0.058	1.60
					1	30	0 09 0			64				1		-		200.0	3
	က	5.70	+ 178	1.8	:0	120		1		-							2.260	0.084	1.64
					0.00	0.30		3.1	<u> </u>		0		A impaign						
	ဂျ	4.50	+183	0.81	002	0.065 0.			1	20 0.010	0					1	2.090	0.046	1.60
	n	3.69	+ 188	0.69	0.015	34	0.60 0.90	0.90 1.20	75 0.015	220		-				-	1.500	0 020	1.50
					-	3.30	0.60 0.			58				Ī		_			
	9	3.27	+193	0.77	0.013 0	090	0.080 0.080	_		95							0.920	0.069	1.58

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 3, Shore Rd. to Sewage Treatment Plant)

Γ		la!	Wetted	Width	Meters		1.76		1.65		1.30		1.72		1 40
L		Total	We	Š	(Me										
		Mean	Deoth	Along	Transect		0.114		0.090		0.056		0.226		0.451
	Distance	from Left	Bank to		Meters		0.870		1.130		1.270		1.950		0 2 2 7 0
				Left	Γ			Î	İ	Î		Ī		0.00	Ī
							-	100000							
					1 100.0								_		
				ters)				1.7846.00		30.00					
				in Me						and the second of the		1.2			
			•	s Edge	1.0					1.70				as established	
			Profile	Waters	on the field of	1.76	0.050	1.65	0.050	178				375070000	
			Depth	m the	- de 1886;	1.50	0.140 0.050	1.50	0.095 0.050	1.30	0.030	1.72	0.005	1.40	0.455
			Stream Depth Profile	Distance from the Waters Edge in Meters	200	1.20	0.120	0.30 0.60 0.90 1.20 1.50 1.65	0.160	0.30 0.50 0.90 1.20 1.30	0.020	0.30 0.60 0.90 1.20 1.72	0.850	0.30 0.60 0.90 1.20 1.40	0.410
			Ø	Distan		06.0	140	06.0	155	06.0	090	08.0	140	06.0	460
)	31 43 43 64	0.30 0.60 0.90 1.20	0.120 0.150 0.140 0.120	09.0	0.060 0.095 0.155	0.50	0.090 0.050 0.060 0.020	09.0	0.145 0.160 0.140	09.0	490 0.510 0.460 0.410
					V. 0.6466	08.0	120 0	08.0	060 0	0.30	0 060	08.0	145 0	3.30	490 0
				Right	S 100 Page 67	0.00	_	0.00	_	_	0.085 0	0.00	0.055 0	0.00	0.83 0.380 0
	Distance	from Righ	Bank to	W. Edge	Meters		0.80		0.20 0.018		0.24		0.69		0.83
Start	Dist.	From	Marker	Meters	IE/1+20m		+198		+203		+209.85		+220.85		4.50 +234.25
Stream	Channel	Width	Meters	Right	to Left		3.43		2.98		2.81		4.36		4.50
			Start	Marker	Number		ကျ		ကျ		ဗ		6		က
			Transect	Compass	Oricolat.		1								

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994(SECTION 3, Sewage treatment plant to Shore Rd.)

Figure Finish State Contention State								_																																	
Start Frieday Company Compan	agm Ink	lative	Kich								- 24	_	- 1				_				-	_	_	C4 ~		-			- (1	-	- 1	N C	N (v +			_	_		_	=
Second Friedrich Continuation	Stre Be	Vege	101	Bank		-	-	- 1		-		_	- (-	_	4000	-	-	- «	· –	N	_				-			-	N	 (N (N C	V -			-	_		-	=
Company Comp			Hab	Qly.	7	7	7	1 0	, ,	7	. ~	7	7	9	9	7	Ø	9 (\ \ \	- 9	9	9	9	~ ^	. ~	7	7	\ <u>'</u>	^	9	7	7 1		, ,	, ,	, ,	~	7	, ,	7	9
Comparison Frinch			ų	_																	တ																				\exists
State Frinks Company		,		ا			;	2									2	2		10		က	n					7	:	N											2
State Frinks Company		3	II de	91				7		. ~	. 00	_	- 1	- 9	9	_	7	<u>_</u> _ ı	- 1	- 1	9	9	(O)	,	. ~	7	7	~ 4	_	9	~	- 1	- 1	- 1	- 1		_	7	- 1	7	9
State Frinks Company	Ver	e S	E 12	R2																	က														-						٦
State Frinks Company	ರ	5		١١																								7	:												2
State Frinks Company		ò	1									9	_	9 (0	9	_		~ (0 1	- 1	9	9	1	, r	. ~	7	7	~ · ·	_	9	7	4 0	- 1	- 1	- 1-	- 1	7	~	- ~	_	9
Second Companies Compani		ř	4	B 2																	၈							\$?		ı	_									٦
Street			<u> </u>	2								2		<u> </u>	· e			-	D		N	က	<u>ო</u>					=	:	2	,	2_									2
Street	u	nce m	: j	20	o 4	2		2 6	8 8	38	4	45	යු ද	3 6	62	29	2	2	2 6	8	26	8	8	<u>ت</u> ۾	8	28	ဗ္ဗ ဗ	5 K	8	53	8	2 8	9 6	2 4	9 9	88	83	8	9.85	0.85	ş
Carlon C	Sta	ista	Mari	1 1	ი თ	၂ ဗ	+ -	+ -	+ +	+	+ 0	ტ +	+ +	+ +	+	+	+	+ ·		- +	+	+	+	+ +	+	+	+	+ +	<u> </u>	+	+	+ -	+ +	+ +	· +	- +	+	+	707	8	. 1
Start Location L		_		_										(1)								.,	.,, (., .,	, (,)	(7)	() (, (t,	(7)	(7)	(C) (,, (, 0	, 0) (7.	, 63	97	(D)		က်	
Start Location L	1		٠.	Die.																																					
Start Charles Californ Ca			Si	CP																																					I
Stream	8		-		63		2		+	ιΩ			0	- CI		<u></u>	-	<u></u>			8					6			,	in or											4
Stream	mete		9	Girls	4		9.	7	ö	2.4			4	60				4			10.8	•	'n	Ť.	•	99.		1.0		71.											
Stream	ara	- 0	<u> </u>	<u></u>	47	8	9	9	92	·	72		ē	5	78		4.	c	o .	ď		8		_	4		22		9												\dashv
Stream	9			Kill	20.	4	u	Ó	4	•	ø		4	ř	4		=	•	-	4		-	Ġ	zi Zi	ci.		က်		9												
Stream	char	1	H	2								9							_																						1
Start Finish Compose	Dis	ું -	-	ŕ																																					
Start Location Location From From From From From From From From			2	3								1.97															,	<u>.</u>			Vert										1
Strain				-																											100										
Strain	T	926	: ē	20m	ert 0.47	6.4	9.53 5.53	7.10	6.3 6.3	1.06	3.51	9.63	9 4	9.6	3.23	8.01		E 6	7 0	3.31	7.51	8.39	n 6	98.5	3.55	6.29	8.28	5.45	7.28	3.28	4.78										1
Start Location Gradient From Fore Bat Comparison Location From Gradient From From Bat State Comparison Location From Gradient From From Bat State Stat	Sta	ista S	Mar	+1	¥ 5€	+	+ 7	+ +	۰ +	+	+ 5	+	+ +	+	+	+	+	-	n o∵ + +		+ 10		_ ,		_	_				+ 16											1
Start Location Gradient From G	(_	_	۳.	_ ₍₁₎		ლ ^ა	, 0) "	9	(F)	<u>ი</u>	., .	, w								ෆ (n							တ်	ဗ်										
Start Location Gradient From G		5 %	. 3	WCOB	5.50	2.33	2.76	4. G	7.64	8.74	3.36	4.17	351	5 5	9.60	8.5	S (9.97	2 35	6.17	8.9	3.49		3.16	9.24	4.99	5.45	ร้													1
Start state and beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful cautiful caut	E S	tatio														•						,	_	~	1		,	-													
Start state and beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful caution beautiful cautiful caut	Stre		Į.	Sight	29 48 29 48	108	244	250	22.5	244	214	238	278	256	280	288	9	280	270	298	308	290	40.5	260	253	204	222	200													
Start cation	`	•	-	1gpt	54 4	360	9 8	מ מ	8 6	64	34	28	98	9 9	86	80	8	8 9	5 6	1 8	128	9:	7 7	3 8	23	24	54 5	2					_				-				1
Start *Finish cation from Erom Gradient From From From Gradient From From From Gradient From 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.55 Sta			—				-		- m	_		_				.0.	0	9 0	2 10	0	_		۰ ۵	- 4		4															-
Start *Finish cation from Erom Gradient From From From Gradient From From From Gradient From 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.54 Start 10.55 Sta	•	lart	Ĕ	Ker	/ert 2.59	8.21	10.57		28.2	35.87	14.6	17.97	52.14 5.14	3 3	0.15	9.75	Ö,	E : CE	9 6	8	54.1	59.0	2.2	20.5 20.5 20.5	3.4	12.6	9.2	Š													1
Start affinish cation from from From Gradient action from From Gradient at 2.59 a + 2.59 a + 2.59 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.54 a + 10.56 a + 10.5	•	ָרָה מַנ [ְ]	표	Mar	် ဗ	9+	+ 6	+ `.	+ +	+	+	+	+ +	- +	+	+ .	ឝ . +	- -	 - +	+	+	+	= · + :	+ +	. ¥	+ 2															
Start *Finish Location from Incation From From From From From From From 10.54 at 2.59 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.55 at 10.5			-	_				_		.,				,	-	٠, ر٠	_		. e.	. w	က	<u>ල</u> (, c	" "	<u>ო</u>	ဂ	ကျ	2													4
Start *Finish Location from Incation From From From From From From From 10.54 at 2.59 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.54 at 10.55 at 10.5			dier	86														5							2.0%																
Start cation Location Trom From From From From From From From F			Gra																																						١
Start cation Location Trom From From From From From From From F		ج ج	-	75	2 5	2	6. 2	. 6	87	19	26	4	8 8	5	75	30.5	8		8	.17	.07	.56		4 6	64	8	8												-		1
Start cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Lo cation Cation		-Ints	rom	arke	+ + 8	ī.	+ 73	7 0	် ရှိ	- 44					.99	107	11	127	148	3.	159	162	₹ 5	20 20	212	217.															
	;			∑	<u>ო</u> თ	တ	თ _		. m	ဗ	S)	ю Т	- 1	9 0	ტ +	გ + .	, +	ტ -) (ტ	9+	ь +	, c	5 69	+	3+	ტ +														
		- 5	-	7	- <u>წ</u>	5	<u> </u>	3 2	53	87	61	97	4 v	8 8	15	75	3 3	8 8	9 . R	8	.17	70.	8	2. 4	40	64	8	9									_				
* O = NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	č	Stal	rom	arke	ulver + 2.5	+ 8.	+ 10 5	+ 20	2 8	35	+ 44.	47.	5, 5	2	8	8	2	11/	135	148	154	159	20.	180	203	212	217.	663													
	•			∑	ບຸ	က	e e	ນ ຕູ	ာ က	က	დ	ය 	T 1	, m	9	ლ ;	ن ب	ტ -	ე ი:	ტ	ტ +	ტ (ص ب	, e	+	3+	ტ -	+													

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

* Distance was measured with an electronic device

Ø
ш
a
0
Ō
$\bar{\mathbf{L}}$
ō
ŏ

Backwater pool assiciated with boulders = 1 Backwater pool associated with rootwad = 2 Backwater pool associated with LWD = 3 Treach pool associated with bedrock = 4 Secondary channel pool = 5

Streambank Vogstative Stability

(To top of bank)

4 = 80% of streambank surface is covered by vegetation, gravel or larger material that does not allow bank etesion. 3 = 50 to 79% of bank surfaces are covered by vegetation, gravel or larger material, allowing minor eresion.

2 = 25 to 49% of bank surfaces are corered by regetation, gravel or larger materials, allowing major eresion.

1 = <25% of banks are covered by vegotation, gravel or larger material, banks erede each year with high water.

0 = No vogstation

COVER RATING CODES;

Lateral Scour pool associated with rootwad = 5 Lateral Scour pool associated with bedrock = 9 Lateral Scour pool associated with LWD = 7

Plungs pool associated with LWD = 6

POOL CODES

Dammed pool associated with LWD = 10

1 - Lardgo LWD (>50 cm.)

2 - Med. LWD (20 to 50 cm.) 3 - Small LWD (10 to 20 cm.)

11 - Pool (see discharge par. for type)

12 - Cubrart

1 = Good (Adult) 7 = No Habitat HABITAT QUALITY CODES:

3 - Average (Adult) 4 m Average (Juv.) 2 = Good (Juv.)

4 = Very large boulders (406.4 to 203.2 cm.) 5 - Large Boulders (203.2 to 101.6 cm.)

6 - Med. boulders (101.6 to 50.8 cm.) 7 - Sanil Boulden (50.8 to 25.4 cm.)

8 - Overstraam Vegetation 9 - Instrum Vegotátion

S = Poor (adalt) 6 = Poor (Juv.)

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 3, Sewage Treatment Plant to Shore Rd.)

	T			all	0.10	0.12	0.12	5	0.20	0.10	0.07								-																					-
		٠.	Horz.	Depth (m)	o	o	Ö	0.115	Ö	Ö	o																													
	DS Fod of	Cutbank	_	D.	<u></u>	<u>80</u>	<u>e</u>		_	ις.	_																													-
	LL C	CEL	-15	Depth (m)	0.05	0.18	0.18	0.14	0.30	0.15	0.07																													
	ے د	1	Vert.	Dep																																				
	% -				0.45		0.315	0.50	0.58	0.35	0.16																													-
) 	Horz.	Depth (m)	0		ö	O	0	0	0																													
	Mid Point of	Cutbank			ις.		<u>o</u>	<u></u>	<u> </u>	0	ღ		-																											-
	מ ב	Ö	Ven.	Depth (m)	0.15		0.20	0.30	0.90	0.20	0.13																													
	Cumaint Dimensions																																							_
			2	Depth (m)	0.30	0.10	0.13	0.33	0.20	0.11	0.12																													
2	2 2	녿	Horz	Dept																																				
	For	Cutbank	1.20		0.095	0.13	90.0	0.19	0.46	90.0	0.14																													
(Cuibank L	;	Vert.	Depth (m)	0.0	o	0	o	Ö	o	o																													
	-		1						S.	<u></u>	_						<u>.</u>																							_
	Red	Distance	l'rom	Marker	3+46.22	3+73.4	3+77.0	3+95.8	3+146.95	3+146.49	3+163.0																													
	2	Dist	ž	Ma	3+7	3+	3+	9 +	3+1	3+1	3+1																													
	-			-	<u> </u>	_ _			Œ	<u>Б</u>	7.8																		-											-
	Crass	Distance	Prom	Marker	41.2	3+68.99[3+75.0L	3+91.5L	3+141.7R	3+143.89L	3+162.77R																													
	Ü	 	=	Ma	4	3+6	3+	3+	3+1	3+1	3+1																													
L C	ee j			НЗ		၈	C)	က	12	12	12				Q	က	၈	12	12	2	12	12	12	72	12	_	Q	12	4		2	7	2	Q	72	7	Q	8		=
c Composition	# ! 4 \	, ,			7	0	၈				N	C4	,	N	12	લ	7	C)	7	0	N.	N	Q.	N	8	12			12	N	N	Ξ	C)	12	വ	12	12	2	75	121
mpd:	Sm. Cobble = 4	&.	Left Bank	Œ.												~	_	_	~	_	_	_	_	_	_	_	_	_			_	6				_	~			_
ပ္သ	ن ز		2	H1	13	Ξ	13	Ξ	13	13	13	5.	<u> </u>	5	5	13	13	13	13	13	13	13	13	13	13	13	13	13	13	on .	5		13	13	13	13	13	13	13	13
Bank	/) <u>.</u>			ВЗ	က	က	0	က	12	6	12	(က	OI.	7	12	12	12	Q	12	72	12	5	ო	12		12	12	က			7	က	N				Q		121
Γ	1	1 🖫	Bank	R2	=	8	N	a	C)	O	N	N I	N .	12	N	N	0	8	12	Q	~	Q	C)	N	0	12	Ω.	7	Q	N	0	Ξ	C)	12	72		12	12	12	9
'	Fines = 1	Jul. Gravel	Right Bank		ဗ	<u>ල</u>	<u>e</u>	၈	က	ဗ	၈	<u>ෆ</u>	e .	<u>.</u>	၈	၈	က	၈	ෆ	၈	၈	ဗ	၈	၈	ဗ	၈	၈	၈	၈	၈	<u></u>	<u>_</u>	6	၈	<u>ල</u>	8	89	၈	eo -	31
	Fines =	. a	~	H	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_					_	_				_	_
	7000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	्	2	_	0	2	0	8	_	-	N	CV.	ત	4	4	C)	N	C)	က	4	Q	က	4	က	_	-	_	က	2	က	8	၈	_	က	-	_	8	2
	à	Stability		Е.	2	Q	0	0	0	Ø	0	-	N	က	4	7	Ø	က	က	4	ဇ	4	2	8	က	က	_	8	Q.	ď	က	4	က	က	-	4	N	_	7	5
-	-				0.94	0.42	0.25	0.12	1.27	.45	1.31	ന	.26	.43	.23	2.54	.92	.57	.37	9.	.79	.15	.34	39	.41	0.73	1.41	92.0	0.87	0.85	1.19	.44	.38	.26	1.28	0.83	1.13	1.18	1.05	331
	700	Height	(Meters)	1	ļ					_		_	_				_	_	_	_	_	_	_		_							_	_			_				1
	à	ĺΪ	(Me	В	0.91	0.92	.685	1.37	1.22	1.51	1.13	1.26	.295	٠.	1.40	1.58	1.24	1.10	1.28	1.10	0.935	0.97	1.24	.155	1.39	0.85	0.65	0.53	0.63	0.93	0.85	1.09	1.16	1.21	0.27	0.34	0.69	0.6	9.0	0 42
-	(L-	E	_								_	_							0	_		_		-		_					-		-					=
	Start	Distance	Marker	ic/1+20m	0+	+5	+10	+15	+20	+25	+30	+32	+40	+45	+20	+ 55	+59.5	+62	+ 67	+72	+77	+85	+87	+92	+97	+103	+108	+113	+118	+123	+128	+133	+138	+143	+148	+153	+158	+163	+168	F173
'	ָּ מ	i II	Ma	<u>ic/</u>			r	1-	-	r	-	г	-	1	1-	1	+	-	1-		1	1-	T	7	7	+	+	+	+	+	+	+	+	+	+	T		т	т	_
		+	ĕ	Ser	က	თ	က	၈	၈	e)	က	က	က	က	က	က	က	၈	က	၈	n	က	හ	က	က	က	က	က	က	၈	က	က	က	က	က	6	က	၈	n	ē.
		Start	Marker	Number																																				
1			_	Z	1																																			

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 3, Sewage Treatment Plant to Shore Rd.)

				_		Bank	Bank Composition	ositio									
	Start			Fines = 1		S	Sm. Cobble = 4	lc = 4				Cutba	Cutbank Dimensions	Sions			
	Distance	Bank	Ban	k Sm.	Bank Sm. Gravel = 2		I.g. Cobble = 5	c = 5	Start	End	- P	US. End of	ı of	Mid	Mid. Point of	<u> </u>	od of
Start	From	Height	Stability		Ig. Gravel =3		Boulder = 6	9	Distance	Distance	20	Cutbank	ınk	C	Cutbank	Crit	Cutbank
Marker	Marker	(Meters)		[Right Baal		Left Bank	ank	From	From	8	Vert.	Horz.	Vert	Horz.	Vert.	Погг.
Number	ic/ 1 + 20m	RIL	H L	H	R2	НЗ	P.	R2 R3	3 Marker		Marker D	Depth (m)	Depth (m)		n) Depth (a) Depth (m	Depth (m) Depth (m) Depth (m) Depth (m)
9		0.32 1.08	8 2	2	8 LOD 12	12	8	12									
0	+183	0.39 1.16	2	O.	12		89	12									
8	+168	0.65 1.49	6	2	3 12		13	12	5								
9	+193	0.55 1.25	5	2	3 12	4	13	12									
9	+198	0.31 1.34	<u>4</u>	Q,	12		89	12									
9	+203	0.27 1.04	2	N.	8 12		89	12	. 9			-					
0	+209.85		2	2	8 12		8	12	9								

BANK COMPOSITION CODES

Soil = 13		s = 12
Rootwad $= 10$	Sand = 11	Riperian Rootmass = 12
Bedrock = 7	Mud = 8	Clay = 9

NB = Bank not clearly defined. BANK STABILITY CODES 0 = Stable no errosion

FP = Flood Plain

2=26 to 50 % streambanks are recieving moderate alteration along the transect line. 1 = 1 to 25% Sircam banks are slightly aftered along the transect line.

3 = 51 to 75% streambanks have recieved major alteration along the transect line. 4 = 76 to 100% streambanks are severly aftered along the transect line.

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 3, Shore Rd. to Sewage Treatment Plant)

-		KI = Mosi Fredonnale substrate	R2 = Second most	Predoninate	R3 = Third most	Predoninate	R4 = Fourth most	Predonúnate	23	SUBSTRATE CODES	1 = fincs (< 2 mm.)	2 = small gravel (2 mm. to 16 mm.)	3 = large gravel (16 mm. to 64 mm.)	4 = small cobble (64 mm. to 128 mm.)	5 = large cobble (128mm. 10256 mm.)	6 = boulder (>256 mm.)	7 = bedrock	8 = Mud	9 = clay	10 = Organic debris	Compaction Codes	1 = loose (can dislodge with foot)	2 = med. (some movement)	3 = high (no movement)	Embeddedness Codes	1 = 100% to 76% embedded	2 = 75% to 51% embedded	3 = 50 tp 26% embedded	4 = 25% to 1% embedded	5 = 0% embedded									
	Embedded	Code		***							-						<u> </u>																					<u> </u>	=
Embedded	Substrate	Yes No		···	10.000.000				×																							•••							-
	8	တ																				×																	=
Compaction	Check One	۰ د				×			×	×	×		×	×			×	×			×												-			·			-
)		T	L	×	×		×	×				×			×	×			×	×	-		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	× =
	200000000000000000000000000000000000000	74 02 03	╢											,																	·								_
_			1-		-	-			4	4		4		_		8		ß	9		4	-	-															0	_
SUBSTRATE COMPOSITION		်	⊨													WYL AN						-		WINE C		-			Andrew .	-Corto			-1						=
MPOS		25																																					-
CO =		ة		N	C)	a	_	0	C)	_	_	_	<u>ෆ</u>	Q	O.	a	co C	4	၈	၈	വ	<u>၈</u>	()		_		_	_	<u>ග</u>	<u>ෆ</u>	<u>ග</u>	-			a	α 	თ	ഹ	==
TRAT		3 2	╢—																																				-
SUBS	1	01	-	၈	က	၈	01	၈	၈	2	01	<u>~</u>	7	က	01	_	OJ.	က	ည	4	၈	a	4	01	က	8	a	ෆ	_	_	_	_	10	Ω.	၈	4	a	6 0	101
		8	╬									140435.7				da is .					-	O. Persona						-34 2 4		 -					-				=
	2000	= E		·																																	·····		-
	***************************************	5	+	4	4	4	_	4	_	<u>ෆ</u>	၈	တ	_	4	-	10	_	7	01	a	7	4	က		a	_	တ	Q	8	Q	Ø	80	89	80	4	ß	6 0	0	8
Start	Distance	From	0+	+5	+10	+15	+20	+25	+30	+35	+40	+45	+50	+55	+59.5	+62	+67	+72	+77	+82	+87	+92	+97	+103	+108	+113	+118	+123	+128	+133	+138	+143	+148	+153	+158	+163	+168	+173	1 +178 I
	Start	Marker	င	6	6	၈	ෆ	ဧ	ဇ	60	ø	n	0	0	Ø	0	е	0	Ø	Ø	Ø	n	Ø	n	Ø	Ø	က	0	6	က	n	ө	တ	6	8	6	<u>ල</u>	ဇ	Ē

Appendix Table 3. Results of Fish Habitat Assessment data collected at Whalley Creek, Section 3, 1994.

WHALLEY CREEK HABITAT ASSESSMENT, 1994 (SECTION 3, Shore Rd. to Sewage Treatment Plant)

LEGEND PANK CODES		substrate	R2 = Second most	Predominate	R3 = Third most	Predominate	R4 = Fourth most	Predominate	Office Care a correction	SUBSTRATE CODES	1 = facs (< 2 mm.)	2 = small gravel (2 mm. to 16 mm.)	3 = large gravel (16 mm. to 64 mm.)	4 = small cobble (64 mm. 10 128 mm.)	5 = large cobble (128mm. to 256 mm.)	6 = boulder (>256 mm.)	7 = bedrock	8 = Mud	9 = clay	10 = Organic debris	Compaction Codes	1 = loose (can dislodge with foot)	2 = med. (some movement)	3 = high (no movement)	Embeddedness Codes	1 = 100% to 76% embedded	2 = 75% to 51% embedded	3 = 50 tp 26% embedded	4 = 25% to 1% embedded	5 = 0% embedded
Emhedded	Substrate	Code																												
Embedded		Yes No						•																			<u>. </u>			
Compaction	Cliech Oild	1 2 3	×	×	×	×	×																							
SUBSTRATE COMPOSITION	B1 B2 B4	03 01 02 03 01 02 03 01	8 10		10		80																							
Start	Distance From	<u>1</u> 0				+198 8	-										•				*****									
1	Marker	Number	9	တ	Ø	9	თ																							

Appendix Table 4. LWD Results during Fish Habitat Assessment on Whalley Creek, Sectoins 1 through 3, 1994.

Habitat Inventory Whalley Creek, 1994 (Sections 1 through 3)

Legend	I WD POSITION		0 = above surface	1 = embedded	2 = on streambed	3 = on riverbank		HABITAT TYPES	CREATED	0 = no habitat	1 = winter habitat	2 = summer habitat	3 = summer and	winter habitat			COVER TYPES		1 = branch	2 = limb	3 = whole tree	4 = stem	5 = Root mass	6 = Living Tree	SPECIES		1 = fr	2 = alder	3 = cedar	4 = hemlock	5 = pine	6 = spruce	7 = willow	8 = maple	9 = unknown	***For Height above	Streambed, fill out only if	LWD Position = 0
		· Species		Ø	ø	8	80	60	n	n	<u>ი</u>	2	တ	e -	n	၈	2	8	7	8	7																	
	Habitat Type	Created		တ	0	8	8	Ø	n	တ	Ø	n	n	n	***	Ø	-	Ø	8	6	n	-																
	Cours	Турс	S	4	4	4	łO	4	4	4	4	4	4. 70.	4	4	4	4	4	4	4	4												•					
bove	Scal DS			0.66	0.2					0.38	0.241	6.0				0.41	0.35				0.15																	
Height Above	Streambed			0.37							2.14	0.55	0.26				0.39																					
(II.WD (m)	Right Hank	[0.91	6.1	1.7	2.00	1.57	Right bank	On R.bank	1.75	1.75		3.65	Embedded	2.8	0.6	0.59	1.34	1.87	00.00						******					- 1/2						
Location of LWD (m)	Relative to Right Bank	[0]	1.3					1.30	·Embedded	3.06	On R.bank	Embedded		1.21	1.40	2.00	Embedded	0.20	1.00	1.25	1.50										•							
Position of LWD	• sec codes	\ 	2		6,0	_		2		0			60	-	-	0			Q																			
Position	SI			5 0,2,3		9	-		7	2		0	0	2					2							-						_		-				
Diameter	OM.1 Po	(E)	1.4	0.45	0.4	0.50	0.40	0.33	•	0.36	0.22	0.30	0.80	0.17	0.39	0.15	0.26	0.27	0.234	0.63	0.24																	
Diameter	Of LWD	(m)	0.3	0:30	0.39	0.55	09.0	09.0	0.43	0.23	0.72	0.30	0.40	0.23	0.345	0.11	0.38	0.15	0.30		0.31																	
	Leagth Of 1 W.D.	(1)	1.8	10.45	2.55	1.25	1.70	1.65	2.70	3.60	13.06	9.65	10.29	4.00	1.40	6.5	3.83	3.55	3.24	2.64	5.48																	
Сопран	Orientation	D. Stream	194	20	9	332	44	352	148	110	98	06	164	134	132	92	160	09	09	52	146								٠									
Finish	Distance From marker	(ie/42 + 9)	1+60.8	1+83.34	1+109.0	1+111.55	1+112.8	1+124.85	2+113.7	2+140.96	2+156.51	2+155.5	Perpendicular	2+177.40	3+56.74	3+62.20	3+102.62	3+100.95	3+102.04	3+101.44	3+156.81						,											
Start	Distance Prom Marker		1+59.0	1+72.89	1+106.45	1+110.3	1+111.1	1+123.19	2+1111.0	2+137.36	2+143.45	2+145.85	2+166.75	2+173.40	3+55.34	3+55.7	3+98.8	3+97.4	3+98.8	3+98.8	3+151.33																	

Section Marker Langth Height Stop Main Langth Height Slope Main Langth Height Slope Main Langth Height Slope Main Langth Height Slope Main Percent Slope Main Main Main Percent Slope Main Main Percent Slope Main Mai	Loo	ation		Lookin	ht Bank g Downstre bottom of B				Bank Downstream bottom of B	
Number N	Operior	Madian		Шајање	01	0000000000000			a	
3 +0 3.40		666666666666666666666666666666666666666	\$5000 BOOK BOOK BOOK BOOK BOOK BOOK BOOK B		C 7037 57	200000000000000000000000000000000000000	00000000000000000000000000000000000000	Page 2000 Control of the Control of		
3 +10 3.80 1.75 46.05% 0.70 0.43 61.43% 0.24 3 .+20 4.46 2.01 45.07% 3.00 1.32 36.67% 0.24 3 .+35 7.24 1.78 2.459% 1.45 1.48 100.00% 1.45 1.17 80.69% 1.17 80.69% 1.				(2000)		Ciopa				Globe
3			4	1.75	46.05%		: ,			
3	÷							3, .3	511,75,6	
0.99	3	.+20	4.46	2.01	45.07%			1.32	36.67%	
3 + 45		-		,	1	31.12%				
3	3	+35	7.24	1.78			7.85	1.94	24.71%	
3 +55	3	+45	1.48	1.48	100.00%		1 1			
3 +55				-			1			
							0.86	0.14	16.28%	45.97%
3 +72	3	+55		0.45	20.45%			2.21		
3 +72			0.20	0.28	140.00%	80.23%	1.375	0.49	35.64%	
3 +82 2.20 1.33 60.45% 3.10 0.95 30.65% 69.21% 33.28% 69.21% 33.28% 69.21% 33.28% 69.21% 33.28% 69.21% 33.28% 69.21% 33.28% 65.46% 65.4								0.04	4.21%	19.92%
3 +97					l		i .	1.72		
3 +97	3	+82	2.20	1.33	60.45%				1	
3 +97 0.75 0.82 117.14% 1.05 1.05 100.00% 65.46% 3 +113 0.56 0.56 100.00% 92.27% 1.07 0.55 51.40% 52.90% 3 +128 0.86 0.86 100.00% 1.25 0.74 47.74% 52.90% 3 +143 1.29 1.29 100.00% 1.55 0.74 47.74% 52.90% 3 +143 1.29 1.09 100.00% 1.55 0.74 47.74% 64.67% 3 +153 0.70 0.39 55.71% 3.00 1.21 40.33% 64.56% 3 +163 0.95 0.33 34.74% 34.84 1.29 26.65% 52.28% 3 +188 1.20 0.40 33.33% 1.55 0.73 47.10% 47.26% 3 +209.85 0.36 0.35 97.22% 28.13% 1.50 0.13 8.67% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1.416</td><td>0.98</td><td>69.21%</td><td></td></t<>							1.416	0.98	69.21%	
0.70	_									33.28%
3 +113	3	+97		1						
3 +113 0.56 0.56 100.00% 1.07 0.55 51.40% 52.90% 3 +128 0.86 0.86 100.00% 1.25 0.74 47.74% 52.90% 3 +143 1.29 1.29 100.00% 1.55 0.74 47.74% 60.00% 73.87% 3 +153 0.70 0.39 55.71% 0.90 0.76 84.44% 64.56% 3 +163 0.95 0.33 34.74% 0.88 64.23% 52.28% 4 1.63 0.95 0.33 34.74% 4.84 1.29 26.65% 0.35 0.25 71.43% 53.08% 1.55 0.73 47.10% 1.22 0.83 68.03% 47.26% 1.22 0.83 68.03% 47.26% 3 +188 1.20 0.40 33.33% 1.50 0.13 8.67% 2.05 0.35 97.22% 28.13% 1.50 0.13 8.67% 2 +195 3.87 2.56 66.15% 4.48 2.05 </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1.05</td> <td>1.05</td> <td>100.00%</td> <td>65.46%</td>				1			1.05	1.05	100.00%	65.46%
3 +128						92.27%				
3 +128 0.86 0.86 100.00% 1.55 0.74 47.74% 73.87% 3 +143 1.29 1.29 100.00% 1.50 0.67 44.67% 0.90 0.76 84.44% 64.56% 3 +153 0.70 0.39 55.71% 3.00 1.21 40.33% 52.28% 3 +163 0.95 0.33 34.74% 1.37 0.88 64.23% 52.28% 3 +163 0.95 0.33 34.74% 1.37 0.88 64.23% 52.28% 4 1.84 1.29 26.65% 1.55 0.73 47.10% 52.28% 3 +188 1.20 0.40 33.33% 5.72 2.06 36.01% 47.26% 4 1.92 0.44 22.92% 28.13% 1.50 0.13 8.67% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 4.04 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184	3	+113	0.56	0.56	100.00%				i i	
3 +143			0.00	2 22					1	52.90%
3 +143 1.29 1.29 100.00% 1.50 0.67 44.67% 64.56% 3 +153 0.70 0.39 55.71% 3.00 1.21 40.33% 52.28% 3 +163 0.95 0.33 34.74% 4.84 1.29 26.65% 52.28% 3 +188 1.20 0.40 33.33% 1.55 0.73 47.10% 68.03% 47.26% 3 +188 1.20 0.40 33.33% 1.50 0.13 8.67% 2.06 36.01% 47.26% 1.92 0.44 22.92% 28.13% 1.50 0.13 8.67% 2.05 0.87 42.44% 1.60 0.94 58.75% 36.47% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 4.47% 4.48 2.05 45.76% 4.47% 4.48 2.05 45.76% 4.47% 4.48 2.05 45.76% 4.48 2.05 45.76% 4.48 4.90 4.90 47.76% 2.28 0.53 23.25% 2.28	3	+128	0.86	0.86	100.00%				1	:
3 +153	9	1.440	1.00	4 00	100.000/		, ,		1	73.87%
3 +153 0.70 0.39 55.71% 3.00 1.21 40.33% 52.28% 3 +163 0.95 0.33 34.74% 0.84 1.29 26.65% 52.28% 3 +188 1.20 0.40 33.33% 5.72 2.06 36.01% 47.26% 3 +188 1.20 0.40 33.33% 5.72 2.06 36.01% 47.26% 4 1.92 0.44 22.92% 28.13% 1.50 0.13 8.67% 2 -195 3.87 2.56 66.15% 4.48 2.05 45.76% 3 +209.85 0.36 0.35 97.22% 45.82% 3.34 0.17 5.09% 4 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 4 4.04 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.28 0.53 23.25% 2 +159 2.50 1.12 44.80% 0.	3	T143	1.29	1.29	100.00%					0.4 5004
3 +163	3	±153	0.70	0.30	55 7104				1	64.56%
3 +163 0.95 0.33 34.74% 4.84 1.29 26.65% 0.35 0.25 71.43% 53.08% 1.55 0.73 47.10% 3 +188 1.20 0.40 33.33% 5.72 2.06 36.01% 1.92 0.44 22.92% 28.13% 1.50 0.13 8.67% 2.05 0.87 42.44% 1.60 0.94 58.75% 36.47% 3 +209.85 0.36 0.35 97.22% 45.82% 4.48 2.05 45.76% 4.94 1.03 25.50% 45.82% 4.48 2.05 45.76% 4.94 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.28 0.53 23.25% 2 +159 2.50 1.12 44.80% 47.76% 0.22 0.22 0.22 100.00% 1.30 0.29 22.31% 0.25 0.22 88.00% 86.48% 2 +124 6.36 4.	ı ı	F 100	0.70	0.05	33.7 178		: i		1	E0 000
3 +188 1.20 0.40 33.33% 1.50 0.13 68.03% 47.26% 1.92 0.44 22.92% 28.13% 1.50 0.13 8.67% 2.05 0.87 42.44% 1.60 0.94 58.75% 36.47% 1.26 0.99 78.57% 2.10 0.10 0.99 78.57% 2.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	3	+163	0.95	0.33	34 74%				1	52.2076
3 +188		, , , ,		,		53.08%	1 1		1	
3 +188 1.20 0.40 33.33% 28.13% 5.72 2.06 36.01% 8.67% 1.92 0.44 22.92% 28.13% 1.50 0.13 8.67% 2.05 0.87 42.44% 1.60 0.94 58.75% 36.47% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 45.76% 45.82% 3.34 0.17 5.09% 28.87% 2.60 0.93 35.77% 28.87% 26.00 0.93 35.77% 28.87% 22.8 0.53 23.25%			3.55	0.20	7 7.40 70	30.5075	i 1		1	47 26%
1.92	3	+188	1.20	0.40	33.33%				1	47.2076
3 +209.85 0.36 0.35 97.22% 2.05 0.87 42.44% 42.44% 36.47% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 45.76% 4.04 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.60 0.93 35.77% 28.87% 2 +159 2.50 1.12 44.80% 0.22 0.22 100.00% 61.62% 2 +159 2.50 1.12 44.80% 4.92 4.18 84.96% 1.30 0.29 22.31% 0.25 0.25 0.22 88.00% 86.48% 0.85 0.85 100.00% 0.85 0.00% 0.00% 0.25 0.22 88.00% 86.48% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%	-		1 1	1		28.13%				
3 +209.85 0.36 0.35 97.22% 1.60 0.94 58.75% 36.47% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 4.04 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.60 0.93 35.77% 28.87% 2 +159 2.50 1.12 44.80% 0.22 0.22 100.00% 61.62% 1.30 0.29 22.31% 0.25 0.25 0.22 88.00% 86.48% 0.40 0.36 0.85 0.85 100.00% 0.25 0.22 88.00% 86.48% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%						2011070				
3 +209.85 0.36 0.35 97.22% 1.26 0.99 78.57% 2 +195 3.87 2.56 66.15% 4.48 2.05 45.76% 4.04 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.60 0.93 35.77% 28.87% 2 +159 2.50 1.12 44.80% 47.76% 0.22 0.22 100.00% 61.62% 2 +159 2.50 1.12 44.80% 4.92 4.18 84.96% 0.40 0.36 90.00% 0.25 0.25 0.22 88.00% 86.48% 0.85 0.85 100.00% 0.45 0.27 60.00% 53.46% 7.47 3.66 49.00% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%									l l	36.47%
2 +195	3	+209.85	0.36	0.35	97.22%				l l	32, 11 /0
2 +184 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.28 0.53 23.25% 2 2.84 0.49 17.25% 47.76% 0.22 0.22 100.00% 61.62% 2 +159 2.50 1.12 44.80% 4.92 4.18 84.96% 86.48% 1.30 0.29 22.31% 0.25 0.22 88.00% 86.48% 0.40 0.36 90.00% 0.85 100.00% 0.25 0.22 88.00% 86.48% 2.50 1.25 50.00% 53.46% 7.47 3.66 49.00% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%	ļ									
2 +184 1.03 25.50% 45.82% 3.34 0.17 5.09% 2 +184 3.82 2.99 78.27% 2.28 0.53 23.25% 2 2.84 0.49 17.25% 47.76% 0.22 0.22 100.00% 61.62% 2 +159 2.50 1.12 44.80% 4.92 4.18 84.96% 1.30 0.29 22.31% 0.25 0.22 88.00% 86.48% 0.40 0.36 90.00% 0.85 0.85 100.00% 2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%	2	+195	3.87	2.56	66.15%		4.48	2.05	45.76%	
2 +184 3.82 2.99 78.27% 2.28 0.53 23.25% 2.84 0.49 17.25% 47.76% 0.22 0.22 100.00% 61.62% 4.159 2.50 1.12 44.80% 0.29 22.31% 0.25 0.25 0.22 88.00% 86.48% 0.40 0.36 90.00% 0.85 0.85 100.00% 2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%			4.04			45.82%			l l	
2 +184 3.82 2.99 78.27% 2.28 0.53 23.25% 100.00% 61.62% 2.84 0.49 17.25% 47.76% 0.22 0.22 100.00% 61.62% 2.50 1.12 44.80% 0.40 0.36 90.00% 0.85 0.85 100.00% 2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%									1	28.87%
2 +159 2.84 0.49 17.25% 47.76% 0.22 0.22 100.00% 61.62% 2.50 1.12 44.80% 0.25 0.25 0.22 88.00% 86.48% 0.40 0.36 90.00% 0.85 0.85 100.00% 2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%	2	+184		2.99	78.27%					
1.30 0.29 22.31% 0.25 0.22 88.00% 86.48% 0.40 0.36 90.00% 0.85 100.00% 2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 7.47 3.66 49.00%					17.25%	47.76%				61.62%
0.40 0.36 90.00% 0.85 0.85 100.00% 2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%	2	+159					4.92	4.18	84.96%	
0.85	į				22.31%		0.25	0.22	88.00%	86.48%
2.50 1.25 50.00% 1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%					1				1	
1.40 0.10 7.14% 0.45 0.27 60.00% 53.46% 7.47 3.66 49.00%										
0.45 0.27 60.00% 53.46% 7.47 3.66 49.00%				ĭ						
2 +124 6.36 4.56 71.70% 7.47 3.66 49.00%						_				
	_			1		53.46%				
0.80 0.68 85.00% 78.35% 1.50 1.56 104.00% 76.50%	2	+124	6.36 0.80	i	1				· ·	76.50%

Section Number 2	Marker Number +96	Length m.	Height	60-000 Alamanan (1996)		i			•
			**************************************	Slope	Total Mean			_	Total
2	+96		m.	Percent	Slope	Length m.	Height	Slope	Mean
		1.80	0.98	54.44%	Olope	2.00	m. 0.75	Percent	Slape
		2.00	1.24	62.00%		1.40		37.50%	
		2.10	1.95	92.86%	69.77%	1.40	0.95	67.86%	52.68%
2	+73	4.50	3.81	84.67%	03.77,6	3.53	3.73	105.67%	
1						0.45	0.93	206.67%	
			-			10.02	1.5	14.97%	100 100
2	+51	2.43	0.94	38.68%		2.16	0.76	35.19%	109.10%
	l l	4.74	1.52	32.07%		5.05	1.68	33.27%	04.000
		4.03	2.49	61.79%	44.18%	0.00	1.00	33.21 78	34.23%
2	+33	6.57	3.43	52.21%		4.90	2.33	47.55%	
	1	3.13	0.30	9.58%	i		2.00	47.33/8	
		0.4	0.44	110.00%	57.26%			j	
2	+5	2.24	3.70	165.18%		3.92	1.16	29.59%	
		-	İ			1.80	0.96	53.33%	41.46%
1	+224	2.67	1.57	58.80%		4.76	2.17	45.59%	41.40%
		İ	1	1		1.03	0.14	13.59%	
			Ī	-		0.90	0.35	38.89%	32.69%
1	+201	5.50	2.10	38.18%		10.60	3.12	29.43%	52.55 /8
		2.30	0.25	10.87%	24.53%				Í
1	+168	4.49	1.58	35.19%	ŀ	6.01	3.25	54.08%	1
						4.12	0.31	7.52%	30.80%
1	+105	10.19	3.75	36.80%	l	9.75	5.26	53.95%	33.33 /6 }
		1.10	0.65	59.09%	47.95%				1
1	+51	12.00	5.60	46.67%		12.67	5.68	44.83%	I
		1.70	1.26	74.12%	60.39%	2.71	0.87	32.10%	38,47%

Appendix 6. Electroshocking Supplemental Notes

- 1. M3+67 to M3+72 two cutthroat fry in the glide. Both fish are in good condition.
- 2. 1 cutthroat present in the pool (right bank) below the debris jam above ('8 cm.) M3+97. No fish were found along the left bank.
- 3. Bypassed the debris jam.
- 4. All but 1 cutthroat was from the pool and inside the culvert at the sewage treatment plant. Numbers are probably higher. The battery on the electroshocker died. Each time the anode was placed in the culvert 2 to 3 cutthroat were pulled out therefore, cutthroat probably utilize the area through the culvert to the face of the weir.
- 5. Cutthroat were distributed throughout this section. One was a 1+, the rest were probably sub 1's.
- 6. Cutthroat in the pool/glide near 185 (95%) and 113, most were sub 1's, one very small 1+.
- 7. No cutthroat were found in the culvert at 2+51. The majority were out of the plunge pool at 2+31.
- 8. Majority @ pool 2+19, three fish were over 1.5 grams.
- 9. Most fish were from the pool @ 110, all fish were small.
- 10. All fish were very small and skinny.
- 11. Includes LOD (ie\tree) approximately 5.5 to 10 grams.
- 12. most fish were founds in the pool at 1+56.
- 13. In pool above the debris jam and one at the high tide mark.

